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The increasing importance of data-driven techniques in fMRI

Traditional neuroscience approaches

• Region of interest (ROI) analysis:
Selecting specific brain regions involved
in a process or behavior

• Forming hypotheses based on prior
knowledge or assumptions about the brain

• Valuable in advancing our understanding
of the brain

• Limited by the assumptions and biases

Data-driven techniques

• Machine Learning and ICA

• Without being constrained by pre-existing
hypotheses or assumptions

• Identifying complex patterns that might
be unexpected or unknown

• Analysing large amounts of data
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Leveraging ICA and DL jointly being learned with a classifier for identifying
interpretable patterns in fMRI

Motivation

• Developing methods for identifying interpretable patterns that can distinguish between
HCs and patients

• Aim to improve understanding and diagnosis of these disorders.

Methodology

• Leveraging the advantages of ICA and DL to:
• Extract powerful features from resting-state fMRI data
• Identify novel, interpretable biomarkers.
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Uncovering brain networks: ICA analysis of fMRI data for spatial maps
and time courses
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Group ICA and back-reconstruction for multi-subject brain network anal-
ysis
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Inter-network relationships are studied through temporal functional net-
work connectivity (tFNC)
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Sparse dictionary learning for FNC feature extraction

Dictionary learning problem: minD,X
∑L

i=1
1
2 | |yi −Dxi | |2 = 1

2 | |Y−DX| |2F s.t. D ∈ D, X ∈ X

Alternating Minimization

Start with (D(0) ,X(0) ). Alternate between two steps:
1 Sparse representation: X(k+1) = argminX∈X

1
2 | |Y − D(k)X| |2F

• OMP, IST, SL0
2 Dictionary update: D(k+1) = argminD∈D

1
2 | |Y − DX(k+1) | |2F

• MOD, KSVD
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Sparse representation of tFNCs can reveal new interpretable patterns and
discriminant features

7



Jointly learn a linear classifier and a dictionary for tFNC sparse represen-
tation to improve discrimination
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Iterative proximal-projection as a flexible approach to a range of sparsity-
promoting functions including non-convex and non-smooth

min
D,Z,W

1
2
∥F − DZ∥2

F + _ · r(Z) + 𝛽

2
∥Ltr − WZtr∥2

F,

s.t. D ∈ D := {D : ∥dg∥2 = 1, g = 1, 2, . . . ,G}.

1 Perform alternating minimization over D,Z, and W
2 Using iterative proximal-projection approach

• Flexible to a range of sparsity-promoting functions, including non-convex and non-smooth
scenarios
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Experimental setup

Data preparation

• Bipolar-schizophrenia network on
intermediate phenotypes resting-state
fMRI dataset (five sites)

• 179 HC and 179 Sz patients

• To obtain subject-specific tFNC-feature
vectors f [k] :

• Group ICA-EBM with order N = 55

• Selecting N = 32 functionally relevant
components

DL setup

• D and W are initialized with DCT
dictionary

• Z initialized with a null matrix

• Complete dictionary

• Sparsity level 50%

• Two scenarios:
- 𝛽 = 0: DL without learning a linear
classifier
- 𝛽 = 0.05: linear classifier jointly learned
with D
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Jointly learned sparse features improve different classification metrics

• Training SVM classifiers with polynomial kernels of order 3 using tFNC-features and
sparse-features

• Repeating the experiment 100 times and reporting the average results

Table 1: Average classification rates [%].

Metric\Feature tFNC Sparse (𝛽 = 0) Sparse (𝛽 = 0.05)
Recall 74.75 ± 0.61 73.56 ± 0.65 75.19 ± 0.65

Specificity 73.78 ± 0.70 74.14 ± 0.70 74.47 ± 0.68
Precision 74.35 ± 0.50 74.27 ± 0.53 74.93 ± 0.51
Accuracy 74.26 ± 0.40 73.85 ± 0.45 74.83 ± 0.43
F1-score 74.35 ± 0.40 73.72 ± 0.46 74.87 ± 0.45

• Sparse features outperform tFNC features
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Sparse coefficients give statistics on each atom’s contribution

Two-sample t-test on sparse coefficients: 99 atoms discriminate HC and Sz groups
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Sparse coefficients give statistics on each atom’s contribution

Two-sample t-test on sparse coefficients: 99 atoms discriminate HC and Sz groups

• Atoms with energy ratios ER > 0 are dominant in HC, and atoms with ER < 0 are
dominant in Sz

• Skewness differs in one group compared with the other
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Discriminant atoms are interpretable

• Reshaped discriminant atoms reveal different network interaction patterns in HC and Sz.
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Conclusion and perspectives

• Sparse representation of brain temporal functional network connectivity (tFNC) is
presented

• A dictionary and linear classifier were jointly learned to classify HC and Sz subjects
using sparse coefficients

• Sparse features improved classification and identified new discriminative patterns in brain
network interaction

• The approach offers new perspectives to study fMRI dynamics and can be extended to
multiple fMRI datasets

• A non-linear classifier learned with the dictionary can improve classification rates
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Thank you!
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