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The increasing importance of data-driven techniques in fMRI

Traditional neuroscience approaches

Data-driven techniques

Region of interest (ROI) analysis:
Selecting specific brain regions involved
in a process or behavior

Forming hypotheses based on prior
knowledge or assumptions about the brain

Valuable in advancing our understanding
of the brain

Limited by the assumptions and biases

Machine Learning and ICA

Without being constrained by pre-existing
hypotheses or assumptions

Identifying complex patterns that might
be unexpected or unknown

Analysing large amounts of data



Leveraging ICA and DL jointly being learned with a classifier for identifying

interpretable patterns in fMRI

Motivation

+ Developing methods for identifying interpretable patterns that can distinguish between
HCs and patients

* Aim to improve understanding and diagnosis of these disorders.

Methodology

 Leveraging the advantages of ICA and DL to:
« Extract powerful features from resting-state fMRI data
* Identify novel, interpretable biomarkers.



Uncovering brain networks: ICA analysis of fMRI data for spatial maps

and time courses

Time course aﬂ‘]: represents the activation of component # at time points 1 <t < T

v.
— N

r| [} ‘ st

4
Ar—
TH vl | =T[ 414
: — \% i

N
I fMRI signal | | Mixing matrix | Spatial maps

Subject index




Group ICA and back-reconstruction for multi-subject brain network anal-

ysis
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Group ICA and back-reconstruction for multi-subject brain network anal-
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Group ICA and back-reconstruction for multi-subject brain network anal-

ysis
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Group ICA and back-reconstruction for multi-subject brain network anal-

ysis
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Group ICA and back-reconstruction for multi-subject brain network anal-

ysis
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Group ICA and back-reconstruction for multi-subject brain network anal-

ysis

Group ICA + Back-reconstruction

sl N
- Concatenation ) , TII A[1]|

< I IT,‘E N 5 sl2]
ST s T
= =R
s+ T S| sten g
-3 I T S R . g
2| | |8 — N— %
a _:"m . o Vv ;“; sl

o Group-level — sy |alxi

Subject index SM

Subj-specific
SM and TCs




Group ICA and back-reconstruction for multi-subject brain network anal-

ysis

Group ICA + Back-reconstruction
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Inter-network relationships are studied through temporal functional net-

work connectivity (tFNC)
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Inter-network relationships are studied through temporal functional net-
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Inter-network relationships are studied through temporal functional net-

work connectivity (tFNC)
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Inter-network relationships are studied through temporal functional net-

work connectivity (tFNC)
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Inter-network relationships are studied through temporal functional net-

work connectivity (tFNC)
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Sparse dictionary learning for FNC feature extraction

Training set atom Sparse coefficient matrix
: .I z mxn I

Dictionary learning problem: minp x ZiLzl %||y,- -Dxl||> = %||Y—DX||12E st. De D,

Alternating Minimization

Start with (D(©, X () Alternate between two steps:

@ Sparse representation: X**1) = argminy_ y %HY - D(/‘)XHf7
* OMP, IST, SLO

@ Dictionary update: D**!) = argminy,_ %||Y - DX("“)H%
« MOD, KSVD



Sparse representation of tFNCs can reveal new interpretable patterns and

discriminant features

5 F D Z
% HC , Sz G: # Atoms | "
o i L
s [ i S
olemf 1 |- 4 | 3
£ — : 5
** Reshape ! g
a Two-sample ] S
[ 172}
t-test : &
1 .
Pattern discriminative K : # Subjects O
: : 9" non-discriminative
interpretation F o [, ] ¢ RPXK
D = [dy,...,dg] € RP*¢
Z = [z'm,.“,z[K]] € ]RGXIT

i = AZ?:1 2gdg



Jointly learn a linear classifier and a dictionary for tFNC sparse represen-

tation to improve discrimination

Problem formulation
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Jointly learn a linear classifier and a dictionary for tFNC sparse represen-

tation to improve discrimination

Problem formulation

4 N

Sparse representation error
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Jointly learn a linear classifier and a dictionary for tFNC sparse represen-

tation to improve discrimination

Problem formulation

/ Sparsity promoting function \

o convex/non-convex
o Smooth/non-smooth
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Jointly learn a linear classifier and a dictionary for tFNC sparse represen-

tation to improve discrimination

Problem formulation

/ Sparsity promoting function \

o convex/non-convex
o Smooth/non-smooth

Sparse representation error
Linear classifier (only on training set)
. 1
min ~|[F ~ DZ|}-+)-7(2) + 5 Lo - WZal3,

D,Z,W

& st. DeD:={D:|d4ll2=1,9=1,2,...,G}. /

L. = [ll[rl]: 000 »lt[rK“]]

Binary group labels:
159 = [0,1]7 and 169 = [1,0]T



Iterative proximal-projection as a flexible approach to a range of sparsity-

promoting functions including non-convex and non-smooth

1
&%V?W—Dﬂﬁhtﬂm+§mm—W%ﬂ%

st. De D :={D: |dg]

,=1,g=12,...,G}.

@ Perform alternating minimization over D, Z, and W
© Using iterative proximal-projection approach

« Flexible to a range of sparsity-promoting functions, including non-convex and non-smooth
scenarios



Experimental setup

Data preparation DL setup

* Bipolar-schizophrenia network on « D and W are initialized with DCT

intermediate phenotypes resting-state ..
P P £ dictionary

fMRI dataset (five sites)
* 179 HC and 179 Sz patients

 Z initialized with a null matrix

. . . « Complete dictionary
« To obtain subject-specific tFNC-feature

vectors fl41 + Sparsity level 50%

« Group ICA-EBM with order N = 55 [Tp0iscenanios;

. . - B =0: DL without learning a linear

* Selecting N = 32 functionally relevant .
s classifier

componen - B =0.05: linear classifier jointly learned

with D

10



Jointly learned sparse features improve different classification metrics

* Training SVM classifiers with polynomial kernels of order 3 using tFNC-features and

sparse-features

» Repeating the experiment 100 times and reporting the average results

Table 1: Average classification rates [%].

‘ Metric\Feature ‘ tFNC ‘ Sparse (8 = 0) ‘ Sparse (8 = 0.05) ‘
Recall 7475 +£0.61 | 73.56 +0.65 75.19 + 0.65
Specificity 73.78 £0.70 | 74.14 £0.70 74.47 + 0.68
Precision 74.35+0.50 | 74.27 £0.53 74.93 + 0.51
Accuracy 74.26 £0.40 | 73.85+0.45 74.83 +0.43
F1-score 74.35+0.40 | 73.72 +0.46 74.87 +0.45

 Sparse features outperform tFNC features
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Sparse coefficients give statistics on each atom’s contribution

Two-sample t-test on sparse coefficients: 99 atoms discriminate HC and Sz groups

K Kes
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Sparse coefficients give statistics on each atom’s contribution

Two-sample t-test on sparse coefficients: 99 atoms discriminate HC and Sz groups

Ex = 10 log(”z[gknc]”g/Hz[gksl]Hg) Skewr = 10log(\skew(zék"d)|/|skew(z[gk5"])|)
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+ Atoms with energy ratios Eg > 0 are dominant in HC, and atoms with Er < 0 are

dominant in Sz

» Skewness differs in one group compared with the other
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Discriminant atoms are interpretable

» Reshaped discriminant atoms reveal different network interaction patterns in HC and Sz.

-0.5

RIRUI WOGOP s o e

_[S , L
P ZéSZJ for g’s dominant in Sz P Z£ “) for g’s dominant in HC

* Less structured * More modularity

« With extreme values * More anatomical organization
13



Conclusion and perspectives

 Sparse representation of brain temporal functional network connectivity (tFNC) is
presented

* A dictionary and linear classifier were jointly learned to classify HC and Sz subjects
using sparse coefficients

 Sparse features improved classification and identified new discriminative patterns in brain
network interaction

 The approach offers new perspectives to study fMRI dynamics and can be extended to
multiple fMRI datasets

* A non-linear classifier learned with the dictionary can improve classification rates
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» The approach offers new perspectives to study fMRI dynamics and can be extended to
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* A non-linear classifier learned with the dictionary can improve classification rates

Thank you!
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