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ABSTRACT

Independent component analysis (ICA) of multi-subject functional
magnetic resonance imaging (fMRI) data has proven useful in pro-
viding a fully multivariate summary that can be used for multiple
purposes. ICA can identify patterns that can discriminate between
healthy controls (HC) and patients with various mental disorders
such as schizophrenia (Sz). Temporal functional network connec-
tivity (tFNC) obtained from ICA can effectively explain the interac-
tions between brain networks. On the other hand, dictionary learn-
ing (DL) enables the discovery of hidden information in data using
learnable basis signals through the use of sparsity. In this paper, we
present a new method that leverages ICA and DL for the identifica-
tion of directly interpretable patterns to discriminate between the HC
and Sz groups. We use multi-subject resting-state fMRI data from
358 subjects and form subject-specific tFNC feature vectors from
ICA results. Then, we learn sparse representations of the tFNCs and
introduce a new set of sparse features as well as new interpretable
patterns from the learned atoms. Our experimental results show that
the new representation not only leads to effective classification be-
tween HC and Sz groups using sparse features, but can also identify
new interpretable patterns from the learned atoms that can help un-
derstand the complexities of mental diseases such as schizophrenia.

Index Terms— ICA, dictionary learning, functional network
connectivity, multi-subject data, resting-state fMRI

1. INTRODUCTION

An important goal in neuroscience is the development of methods
for identifying interpretable patterns that provide discrimination be-
tween healthy controls (HC) and different groups of patients. Func-
tional magnetic resonance imaging (fMRI) has proven useful for the
study of healthy brain as well as different brain disorders, including
schizophrenia (Sz) [1–3]. However, the high dimensionality struc-
ture and the noisy nature of fMRI data cause some challenges. In-
dependent component analysis (ICA) has proven particularly useful
for feature selection and statistical analysis of fMRI data [4–6].

ICA is a data-driven approach that decomposes the fMRI data
into a set of independent components and their corresponding time
courses (TC). Unlike classical model-driven methods, such as the
general linear model (GLM) [7] that requires predefined model pa-
rameters, ICA decomposes brain activities into functional networks
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putational studies is part of the UMBC High Performance Computing Facility
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that are maximally independent. By concatenating individual sub-
ject data and applying one ICA estimation on the aggregate data,
group ICA (GICA) [8] generalizes ICA to multi-subject analysis that
provides for group inferences. The brain networks that are identi-
fied by ICA can be used for studying the inter-network relationships
through temporal functional network connectivity (tFNC): the Pear-
son correlations between pairs of TCs. tFNC has been shown to be
highly informative, for instance, chronic mental disorders such as
schizophrenia are characterized by significant abnormalities in brain
connections [9, 10].

Deep learning methods are also frequently used to detect dis-
criminating biomarkers, but the findings are not directly inter-
pretable and additional steps such as relevance propagation are
typically needed [11–14]. In contrast, matrix decompositions such
as dictionary learning offer a sparse linear decomposition of the
signals based on a set of interpretable bases called atoms [15].
These techniques have shown to extract new, easily comprehensible
patterns from the data, revealing data’s hidden information [16–21].

In this paper, we develop a method to extract a set of power-
ful features from resting state fMRI data by bringing together the
advantages of ICA and DL. Given that tFNCs are effective in differ-
entiating between the HC and Sz groups, these new features are de-
rived from the sparse representation of the tFNCs from resting-state
fMRI data. Our experimental findings show that compared with the
original tFNCs, these new features help improve the classification
performance between HC and Sz groups. In addition, the approach
identifies novel, interpretable biomarkers that help explain the com-
plexities of brain disorders such as schizophrenia.

In the rest of this paper, Section 2 reviews the ICA and DL meth-
ods. The proposed framework is discussed in Section 3. Section 4
presents experimental results. The conclusions and perspectives are
discussed in Section 5.

2. BACKGROUND

In this section, we first provide a background on how the functional
network connectivity features we make use of are created. Then, we
review dictionary learning, a central element of our method.

2.1. Functional network connectivity using group ICA

Consider the mixture model x(v) = As(v), where x(v) is the ob-
served mixture of N statistically independent signals (components)
s(v) = [s1(v) . . . sN (v)]T at voxel v mixed via A. The compo-
nents can be estimated as ŝ(v) = Wx(v), where W 2 RN⇥N is
a demixing matrix, which can be obtained by ICA. We make use
of GICA [22], where temporal concatenation of subject datasets isIC
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applied to form group data followed by performing one ICA on the
group data. The subject-specific result can be achieved by back-
reconstruction, which allows the comparison of spatial maps and
time courses across subjects, while also addressing the issue with
permutation ambiguity inherent in the ICA [23]. The temporal in-
teractions between brain networks for the kth subject can be pre-
sented as tFNC[k] 2 RN⇥N through the Pearson correlation be-
tween time courses from A[k], which underwent postprocessing pro-
cedure in [24]. Since tFNC[k] is symmetric, for subject k, we only
use its upper triangular data, and arrange them in vector f [k] of size
P = N(N�1)

2 to serve as the subject’s FNC-feature vector.

2.2. Dictionary learning and sparse representation

Dictionary learning is the task of estimating a set of basis signals,
called atoms, using a training dataset such that each training sam-
ple can be written as a sparse linear combination of the learned
atoms. Mathematically, consider some training feature vectors
f [k] = [f [k]

1 , . . . , f [k]
P ]T collected as the columns of the matrix

F = [f [1], . . . , f [K]] 2 RP⇥K . Then, the goal is to learn a dic-
tionary D = [d1, . . . ,dG] 2 RP⇥G, with G as the number of
atoms, such that F = DZ and the columns of the coefficient matrix
Z = [z[1], . . . , z[K]] 2 RG⇥K are sparse. That is, each feature
vector f [k] can be written as f [k] =

PG
i=1 zgdg , where most of

zg’s are zeros. To learn D, a sparsity promoting function denoted
r is considered to impose a sparsity constraint on the coefficient
matrix Z. The dictionry learning problem is then formulated as
follows [15]:

min
D,Z

1
2
kF�DZk2F+� · r(Z),

s.t. D 2 D := {D : kdgk2= 1, g = 1, 2, . . . , G}, (P1)

where k.kF is the Frobenius norm, and � > 0 is a sparsity parameter.
Problem (P1) can be solved using alternating minimization,

which iterates between two steps: dictionary update (DU), and
sparse representation (SR). The DU step minimizes (P1) across dic-
tionary D while assuming that Z is fixed, and in (SR) step, (P1) is
solved with respect to Z assuming D is fixed. Different approaches
can be used to alternate between these two steps [15, 25–27].

3. METHODOLOGY

In this section, we propose the sparse representation of the FNC-
features from fMRI data, and show how it reveals new interpretable
patterns that can provide discrimination between HC and Sz.

3.1. Joint classifier and dictionary learning for FNC-features

We propose to jointly learn a linear classifier and a dictionary to find
the sparse representations of the FNC-feature vectors f [k] = Dz[k].
We concatenate the feature vectors of all subjects in matrix F =
[f [1], . . . f [K]], and consider a common dictionary D 2 RP⇥G with
G as the number of atoms. Then, the DL problem will be as in (P1).
To jointly learn a linear classifier with the dictionary D, we use the
binary labels l(HC) = [0, 1]T and l(Sz) = [1, 0]T for HC and Sz
groups, respectively. So, with a linear classifier W 2 R2⇥G, the
label of subject k can be estimated as l[k] = Wz[k]. We denote
the data corresponding to training and test sets with subscript “tr”,
and “ts”, respectively. By concatenating the labels for Ktr training
datasets in the label matrix Ltr = [l[1]tr , . . . , l[Ktr]

tr ], we have Ltr =

Algorithm 1 Proposed method for solving (P2)

1: Inputs: Ftr, Fts, Ltr, , G, µ, �, Iterin, Iterout

2: Initialization: D & W: DCT , Z = [0]G⇥K

3: for i = 1 : Iterout do
4: for j = 1 : Iterin do
5: SR-gradient:
6: rJZts = �DTFts +DTDZts

7: rJZtr = �DT (Ftr �DZtr)� �WT (Ltr �WZtr)
8: SR-sparsification:
9: Zts  proxµ�r(·)(Zts � µrJZts)

10: Ztr  proxµ�r(·)(Ztr � µrJZtr)
11: end for
12: Z [Ztr,Zts]

13: DU: D PD

⇣
FZT (ZZT )�1

⌘

14: Classifier update: W LtrZ
T
tr (ZtrZ

T
tr )

�1

15: end for
16: Output: D, Z, W

WZtr. Inspired by [28], we add this equality as a discriminative
penalty with parameter � to the cost function in (P1), and solve the
following problem:

min
D,Z,W

1
2
kF�DZk2F+� · r(Z) + �

2
kLtr �WZtrk2F ,

s.t. D 2 D := {D : kdgk2= 1, g = 1, 2, . . . , G}. (P2)

We note that in the above formulation, we consider to update the dic-
tionary D using the whole dataset F = [Ftr,Fts] and Z = [Ztr,Zts],
while for the classification term, we only involve the training labels.

To solve (P2), we perform alternating minimization. At iteration
i, dictionary update (DU) is obtained by setting the gradient of the
target function with respect to D to zero, and projecting the result to
the set D. This results in a closed form expression (DU): D(i)  
PD

⇣
FZT (ZZT )�1

⌘
, where PD is the projection on the set D.

In the sparse representation (SR) step, different approaches such
as orthogonal matching pursuit (OMP) and proximal methods can be
used [15, 25]. Here, we use iterative proximal-projection approach
due to its flexibility to a range of sparsity-promoting functions, in-
cluding non-convex and non-smooth scenarios [25]. The proximal
mapping is a key operator in these algorithms defined as:

Definition 1. [29] The proximal mapping of a proper and lower
semicontinuous function r : domr ! (�1,+1] at x 2 Rn is
proxr(x) = argminu2domr

{ 1
2kx� uk2F+r(u)}.

We first decompose the sparse coefficients into training and
testing sets, and we separately update Ztr and Zts using proximal
method. The proximal approach consists of two steps: 1) gradient
step, 2) sparsification step. We start with updating Zts. By defining
JZts , 1

2kFts �DZtsk2F , the gradient step is rJZts = �DTFts +

DTDZts. Then, the sparsification step is (SR-sparsification): Zts  
proxµ�r(·)(Zts � µrJZts), where proxg(·) is given in Definition 1.
Selecting various functions for r(·) results in different sparsifi-
cations. For example, the SR-sparsification step will be soft-
thresholding if we use the `1-norm, and hard-thresholding if we
use the `0-norm. In this paper, we consider a -sparse constraint,
and set

r(Zts) ,
(
0 if kZtsk0 

1 o.w.
. (1)
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chosen from a dictionary. Thus, the signals reside in a union of
subspaces, and the dictionary constitutes an overcomplete set of
basis for the subspaces. DL aims at learning the dictionary from
the data.

The conventional DL formulation is an unsupervised learning
problem. Let xn � RM for n = 1, 2, . . . , N be the n-th datum.
Collect them in the data matrix X := [x1,x2, . . . ,xN ]. For a
dictionary D := [d1,d2, . . . ,dK ] � RM�K , which consists of
K atoms {dk � RM}, the DL model assumes that each da-
tum xn �

�K
k=1 znkdk = Džn, for a sparse coefficient vector

žn = [zn1, . . . , znk]�, where � denotes the transposition. Upon
defining the sparse matrix Z := [ž1, . . . , žN ] � RK�N , the DL
problem can be formulated as [43]

min
D,Z

1

2
�X � DZ�2

F + λ�Z�1 (1a)

subject to D � D := {D : �dk�2 � 1, k = 1, 2, . . . , K}
(1b)

where � · �F is the Frobenius norm, �Z�1 :=
�

n,k |znk| is the
�1-norm, which promotes sparsity in Z, and λ > 0 is a parameter
that can be varied to adjust the sparsity level ofZ. The constraints
in (1b) normalize the dictionary atoms, which is necessary due to
the scaling ambiguity inherent in the model. That is, scaling the
k-th column dk of D by � and the k-th row z�

k � R1�N of Z by
1/� will not alter the product. Thus, the formulation essentially
seeks a bi-factorization of data matrix X into a normalized
dictionary matrix D and a sparse coefficient matrix Z. The
DL problem (1) is not a convex optimization problem, but an
alternating minimization algorithm can be employed to reach a
locally optimal solution [44], [45].

B. Supervised Dictionary Learning

The DL method can also be used for supervised learning tasks.
In this case, rather than learning the dictionary to represent the
input data with high fidelity, a discriminative dictionary can be
learned, which captures the unique traits in the data, charac-
teristic of different classes. In the neuroimaging applications,
discriminative DL can reveal neural activity patterns that are
unique to different (groups of) subjects.

One way to formulate a supervised DL problem is to augment
to the learning objective a classification cost. Similar to [33], we
advocate employing the Fisher’s discriminant cost [46]. Suppose
that the entire data set X is partitioned to C classes. Let Nc

with cardinality Nc be the set of sample indices belonging to
class c, for c = 1, 2, . . . , C. Let yn be the feature vector, to be
learned by DL, corresponding to the input sample xn, for all
n = 1, 2, . . . , N , and Y := [y1, . . . ,yN ]. The class mean and
the overall mean vectors are defined as

mc :=
1

Nc

�

n�Nc

yn (2)

m :=
1

N

N�

n=1

yn (3)

respectively. Let us also define so-called the within-class scatter
matrix Sw and the between-class scatter matrix Sb as

Sw(Y) :=
C�

c=1

�

n�Nc

(yn � mc)(yn � mc)
� (4)

Sb(Y) :=
C�

c=1

Nc(mc � m)(mc � m)� (5)

respectively. The Fisher criterion aims at learning the features
such that they are clustered together in the same class, leading to
a small intra-class scatter, and at the same time the class means
are far away among others, yielding a large inter-class scatter.
Thus, a suitable cost to minimize for the classification task is

f(Y) := tr{Sw(Y)} � tr{Sb(Y)} + �Y�2
F (6)

where the last term ensures the convexity of the cost function
with respect to Y [33], [47].

In fact, upon defining N -by-N matrices H1 and H2, where
the (n, n�)-entry h1,nn� of H1 is defined as

h1,nn� :=

�
1

Nc
if n, n� � Nc

0 otherwise
(7)

and all entries of H2 are equal to 1/N , the Fisher’s objective
in (6) can be re-written as

f(Y) = �Y(I � H1)�2
F � �Y(H1 � H2)�2

F + �Y�2
F . (8)

Thus, the Hessian �2f(Y) is computed as

H := 2I � 2H1 + H2 (9)

where the symmetry of H1 and H2 as well as H2
2 = H2 =

H1H2 = H2 = H1 are used. It can be easily proved that H
is positive semi-definite by showing the eigenvalues of H are
nonnegative [47]. Furthermore, f(Y) can be simply written as

f(Y) = tr{YHY�}. (10)

Thus, a supervised DL problem can be posed as

min
D�D,Z

1

2
�X � DZ�2

F + λ�Z�1 +
µ

2
f(Z) (11)

where D now captures the discriminative basis for data {xn},
the sparse codes {žn} play the role of the features input to the
classification cost f(·), and µ is a parameter that balances the
reconstructing error and the Fisher cost.

C. Capturing Common and Discriminative Features

In medical image analysis, the focus is not merely on extract-
ing discriminative features for improving classification perfor-
mance, but rather on obtaining features that can explain both
common and individual traits in the groups of samples. For this
purpose, a structured dictionary is employed, where D contains
both the common dictionary D that is shared across all class
data, and the discriminative dictionary �D, which captures the
features reflecting the class differences. That is, letD := [D, �D],
where D � RM�K and �D � RM� �K . Here, K is the number
of common atoms, and �K the number of discriminative atoms.
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chosen from a dictionary. Thus, the signals reside in a union of
subspaces, and the dictionary constitutes an overcomplete set of
basis for the subspaces. DL aims at learning the dictionary from
the data.

The conventional DL formulation is an unsupervised learning
problem. Let xn � RM for n = 1, 2, . . . , N be the n-th datum.
Collect them in the data matrix X := [x1,x2, . . . ,xN ]. For a
dictionary D := [d1,d2, . . . ,dK ] � RM�K , which consists of
K atoms {dk � RM}, the DL model assumes that each da-
tum xn �

�K
k=1 znkdk = Džn, for a sparse coefficient vector

žn = [zn1, . . . , znk]�, where � denotes the transposition. Upon
defining the sparse matrix Z := [ž1, . . . , žN ] � RK�N , the DL
problem can be formulated as [43]

min
D,Z

1

2
�X � DZ�2

F + λ�Z�1 (1a)

subject to D � D := {D : �dk�2 � 1, k = 1, 2, . . . , K}
(1b)

where � · �F is the Frobenius norm, �Z�1 :=
�

n,k |znk| is the
�1-norm, which promotes sparsity in Z, and λ > 0 is a parameter
that can be varied to adjust the sparsity level ofZ. The constraints
in (1b) normalize the dictionary atoms, which is necessary due to
the scaling ambiguity inherent in the model. That is, scaling the
k-th column dk of D by � and the k-th row z�

k � R1�N of Z by
1/� will not alter the product. Thus, the formulation essentially
seeks a bi-factorization of data matrix X into a normalized
dictionary matrix D and a sparse coefficient matrix Z. The
DL problem (1) is not a convex optimization problem, but an
alternating minimization algorithm can be employed to reach a
locally optimal solution [44], [45].

B. Supervised Dictionary Learning

The DL method can also be used for supervised learning tasks.
In this case, rather than learning the dictionary to represent the
input data with high fidelity, a discriminative dictionary can be
learned, which captures the unique traits in the data, charac-
teristic of different classes. In the neuroimaging applications,
discriminative DL can reveal neural activity patterns that are
unique to different (groups of) subjects.

One way to formulate a supervised DL problem is to augment
to the learning objective a classification cost. Similar to [33], we
advocate employing the Fisher’s discriminant cost [46]. Suppose
that the entire data set X is partitioned to C classes. Let Nc

with cardinality Nc be the set of sample indices belonging to
class c, for c = 1, 2, . . . , C. Let yn be the feature vector, to be
learned by DL, corresponding to the input sample xn, for all
n = 1, 2, . . . , N , and Y := [y1, . . . ,yN ]. The class mean and
the overall mean vectors are defined as

mc :=
1

Nc

�

n�Nc

yn (2)

m :=
1

N

N�

n=1

yn (3)

respectively. Let us also define so-called the within-class scatter
matrix Sw and the between-class scatter matrix Sb as

Sw(Y) :=
C�

c=1

�

n�Nc

(yn � mc)(yn � mc)
� (4)

Sb(Y) :=
C�

c=1

Nc(mc � m)(mc � m)� (5)

respectively. The Fisher criterion aims at learning the features
such that they are clustered together in the same class, leading to
a small intra-class scatter, and at the same time the class means
are far away among others, yielding a large inter-class scatter.
Thus, a suitable cost to minimize for the classification task is

f(Y) := tr{Sw(Y)} � tr{Sb(Y)} + �Y�2
F (6)

where the last term ensures the convexity of the cost function
with respect to Y [33], [47].

In fact, upon defining N -by-N matrices H1 and H2, where
the (n, n�)-entry h1,nn� of H1 is defined as

h1,nn� :=

�
1

Nc
if n, n� � Nc

0 otherwise
(7)

and all entries of H2 are equal to 1/N , the Fisher’s objective
in (6) can be re-written as

f(Y) = �Y(I � H1)�2
F � �Y(H1 � H2)�2

F + �Y�2
F . (8)

Thus, the Hessian �2f(Y) is computed as

H := 2I � 2H1 + H2 (9)

where the symmetry of H1 and H2 as well as H2
2 = H2 =

H1H2 = H2 = H1 are used. It can be easily proved that H
is positive semi-definite by showing the eigenvalues of H are
nonnegative [47]. Furthermore, f(Y) can be simply written as

f(Y) = tr{YHY�}. (10)

Thus, a supervised DL problem can be posed as

min
D�D,Z

1

2
�X � DZ�2

F + λ�Z�1 +
µ

2
f(Z) (11)

where D now captures the discriminative basis for data {xn},
the sparse codes {žn} play the role of the features input to the
classification cost f(·), and µ is a parameter that balances the
reconstructing error and the Fisher cost.

C. Capturing Common and Discriminative Features

In medical image analysis, the focus is not merely on extract-
ing discriminative features for improving classification perfor-
mance, but rather on obtaining features that can explain both
common and individual traits in the groups of samples. For this
purpose, a structured dictionary is employed, where D contains
both the common dictionary D that is shared across all class
data, and the discriminative dictionary �D, which captures the
features reflecting the class differences. That is, letD := [D, �D],
where D � RM�K and �D � RM� �K . Here, K is the number
of common atoms, and �K the number of discriminative atoms.
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are derived from the sparse representation of the FNCs from
resting-state fMRI data. Our experimental findings show that
compared to the original FNCs, these new features improve
the the classification performance between groups HC and
Sz. In addition, our suggested approach identifies novel, in-
terpretable biomarkers that provide discrimination between
these two groups.

The rest of this paper is organized as follows: in Section 2
a review on the ICA and DL methods are presented. The de-
tails of the proposed method are discussed in Section 3. Sec-
tion 4 presents the performance of the proposed method. Fi-
nally, the conclusions and perspectives are discussed in Sec-
tion 5.

2. BACKGROUND

This section begins with an overview of the ICA method
based on entropy bound minimization (EBM). Then, the DL
approach for sparse representation of the signals is explained.

2.1. ICA based on entropy bound minimization (EBM)

ICA-EBM [27] is an ICA approach that uses an entropy es-
timator which is based on the maximization of entropy. This
method is well recognized for being compatible with sources
originating from different distributions. By introducing a few
classes of nonlinear functions, these sources can come from
distributions that are sub- or super-Gaussian, unimodal or
multimodal, symmetric or skewed.

Consider the mixture model x(v) = As(v), where
x(v) = [x1(v) . . . xN (v)]T is the observed mixture of
N statically independent random variables (components)
s(v) = [s1(v) . . . sN (v)]T at voxel v through the mixing ma-
trix A � RN�N . Then, the estimation of the components can
be obtained by ŝ(v) = Wx(v), where W � RN�N is the
demixing matrix. From now on, for the sake of simplicity, we
skip denoting the voxel index v. In order to estimate the sep-
aration matrix W, one can leverages the mutual information
(MI) between the N random variables {s1, . . . , sN}:

JMI(W) =
N�

n=1

H(sn) � log|W|�H(x), (1)

where, H(.) denotes the entropy. Consider an arbitrary ran-
dom variable z. In order to numerically estimate the entropy
H(z), ICA-EBM considers m = 1, . . . M measuring func-
tions Qm(z), and minimizes an upper bound estimate of H(z)
over the functions Qm(z)

Ĥ(z) = min
1�m�M

�
H[bound]

m (z)
�

, (2)

where H[bound]
m (z) is as a function of the expectation E{Qm(z)}

being replaced by the sample mean of the observations
{z1, . . . , zP }. Combining (1) and (2), and decoupling the

problem over the coloumns of the demixing matrix wn, the
final ICA-EBM cost is as follows:

JEBM(wn) � �Vm(n){E[Qm(n)(sn)]} � log|h�
n wn|, (3)

where V is the entropy which is calculated based on a nu-
merical approach suggested in [27] section-IV, h�

n is a unit
vector that is perpendicular to all the rows of W except wn,
and m(n) is the minimizer of (2) corresponding to the com-
ponent sn. Thanks to the use of different measuring functions
Qm, ICA-EBM is compatible with source components com-
ing from different distributions.

2.2. Dictionary learning and sparse representation

Dictionary learning (DL) is a decomposition method that pro-
vides a sparse linear representation of the signals on the basis
of a collection of units known as atoms [21].

Consider the feature vector f [k] = [f [k]
1 , . . . , f [k]

P ]T

from dataset k � {1, . . . , K}, and the dictionary D =
[d1, . . . ,dG] � RP�G where the columns are the atoms
of the dictionary with unit norm. Then, the feature vector f [k]

can be modeled as f [k] =
�G

i=1 zgdg , where zg’s are the ele-
ments of the sparse coefficient vector z[k] = [z[k]

1 , . . . , z[k]
G ]T .

Having K datasets, concatenating them gives the matrix
form F = DZ, where F = [f [1], . . . , f [K]] � RP�K and
Z = [z[1], . . . , z[K]] � RG�K . Now, by imposing sparse
assumption on the coefficient matrix Z with the sparse pro-
moting function r and the sparsity hyper-parameter � > 0,
the DL problem is formulated as follows:

min
D,Z

1

2
�F � DZ�2

F +� · r(Z),

s.t. D � D := {D : �dg�2� 1, g = 1, 2, . . . , G}, (P1)

where �.�F is the Frobenius norm. There are a variety of
functions that the sparsity-promoting function r(.) can take,
including the �0 and �1 norms.

Problem (P1) can be solved using the method of alter-
nating minimization, which consists of two steps: dictionary
update (DU), and sparse representation (SR). The DU step
minimizes (P1) across dictionary D while assuming that Z is
fixed, and in (SR) step, (P1) is solved with respect to Z as-
suming D is fixed. Different approaches can be used to go
over these two steps [21, 28–30].

3. PROPOSED METHOD

3.1. Extraction of FNC features

Functional Network Connectivity (FNC) describes the inter-
action between brain networks. It is shown that chronic men-
tal disorders such as schizophrenia are characterized by sig-
nificant abnormalities in brain connections [31]. As a result,
in this paper we employ FNC to study brain functionality.
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are derived from the sparse representation of the FNCs from
resting-state fMRI data. Our experimental findings show that
compared to the original FNCs, these new features improve
the the classification performance between groups HC and
Sz. In addition, our suggested approach identifies novel, in-
terpretable biomarkers that provide discrimination between
these two groups.

The rest of this paper is organized as follows: in Section 2
a review on the ICA and DL methods are presented. The de-
tails of the proposed method are discussed in Section 3. Sec-
tion 4 presents the performance of the proposed method. Fi-
nally, the conclusions and perspectives are discussed in Sec-
tion 5.
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m (z) is as a function of the expectation E{Qm(z)}

being replaced by the sample mean of the observations
{z1, . . . , zP }. Combining (1) and (2), and decoupling the

problem over the coloumns of the demixing matrix wn, the
final ICA-EBM cost is as follows:
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where V is the entropy which is calculated based on a nu-
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vector that is perpendicular to all the rows of W except wn,
and m(n) is the minimizer of (2) corresponding to the com-
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of a collection of units known as atoms [21].
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Having K datasets, concatenating them gives the matrix
form F = DZ, where F = [f [1], . . . , f [K]] � RP�K and
Z = [z[1], . . . , z[K]] � RG�K . Now, by imposing sparse
assumption on the coefficient matrix Z with the sparse pro-
moting function r and the sparsity hyper-parameter � > 0,
the DL problem is formulated as follows:
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s.t. D � D := {D : �dg�2� 1, g = 1, 2, . . . , G}, (P1)

where �.�F is the Frobenius norm. There are a variety of
functions that the sparsity-promoting function r(.) can take,
including the �0 and �1 norms.

Problem (P1) can be solved using the method of alter-
nating minimization, which consists of two steps: dictionary
update (DU), and sparse representation (SR). The DU step
minimizes (P1) across dictionary D while assuming that Z is
fixed, and in (SR) step, (P1) is solved with respect to Z as-
suming D is fixed. Different approaches can be used to go
over these two steps [21, 28–30].

3. PROPOSED METHOD

3.1. Extraction of FNC features

Functional Network Connectivity (FNC) describes the inter-
action between brain networks. It is shown that chronic men-
tal disorders such as schizophrenia are characterized by sig-
nificant abnormalities in brain connections [31]. As a result,
in this paper we employ FNC to study brain functionality.
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In order to obtain the FNCs, we propose using the ICA-
EBM approach described in section 2.1 on resting-state fMRI
data X[k] to get the subject specific time courses A[k] =

[a[k]
1 , . . . ,a[k]

N ] and the N corresponding components S[k] =

[s[k]
1 , . . . , s[k]

N ]T , where X[k] = A[k]S[k]. Additionally, we
align the components across subjects by using the Group-ICA
technique [10], so that the nth components s[k1]

n and s[k2]
n for

subjects k1 and k2 are statically dependent on one another
and reflect nearly the same brain areas. Now that we have the
time courses A[k], we form the FNC for subject k by com-
puting the Pearson correlation between each pair of the time
courses: FNC[k] = (A[k])T A[k] � RN�N , followed by be-
ing z-scored to zero mean and unit variance. Since FNC[k] is
symmetric, for each subject k, we only use the information in
top triangle of the FNC matrix and store it in a vector fk of
size P = N(N�1)

2 as the subject’s FNC-feature vector.

3.2. Sparse representation of FNC features

In this part, we propose the sparse representation of the
subject-specific FNC-feature vectors f [k] = Dz[k]. To this
end, we concatenate the feature vectors of all subjects in
matrix F = [f [1], . . . f [K]], and we consider a common dictio-
nary D � RP�G with G as the number of atoms. Then, the
DL problem will be the same as (P1).

To solve (P1), we perform the technique of alternate min-
imization. The solution to DU at iteration i is obtained by
setting to zero the gradient of the target function in (P1) with
respect to D, and projecting the result to the set D. The result
has a closed form as the following:

(DU): D(i) �� PD

�
FZT (ZZT )�1

�
, (4)

where PD denotes the projection to the set D. In (SR) step,
(P1) is solved with respect to Z assuming D is fixed. In this
regard, different approaches such as orthogonal matching pur-
suit (OMP) and proximal methods can be used [21,28]. In this
paper, we use iterative proximal-projection approach (IPP)
due to its flexibility to a range of sparsity-promoting func-
tions, including non-convex and non-smooth scenarios [28].
The term proximal mapping refers to a key operator in these
algorithms and is defined as follows:

Definition 1. [32] The proximal mapping of a proper and
lower semicontinuous function r : domr �� (��, +�] at
x � Rn is defined as

proxr(x) = argmin
u�domr

�
1

2
�x � u�2

F +r(u)

�
.

The proximal approach consists of two main steps 1) the
gradient step, 2) the sparsification step. By defining JZ ,
1
2�F � DZ�2

F , the gradient step will be

(SR-gradient): Z̃ = Z(i-1) � µZ�JZ, (5)

where �JZ = �DT F + DT DZ(i-1), and Z(i-1) is the update
of Z at previous iteration i � 1. Then, the sparsification step
is as follows:

(SR-sparsification): Z[i] �� proxµZ�r(.)(Z̃), (6)

where proxg(.) is the proximal mapping operator in Defini-
tion 1. Different sparsifications can be achieved by selecting
various functions for r(.) and applying the proximal operator.
As two examples, the sparsification step (6) will provide soft-
thresholding if we select the �1-norm i.e. r(.) = �.�1, and
hard-thresholding if we select the �0-norm.

3.3. Interpretability, and discrimination in sparse space

In this part, from the sparse decomposition of the FNC-
features, we aim to introduce a new discriminative feature
vector, along with new interpretable patterns.

To accomplish this goal, we suggest assigning the new
sparse-feature vector of subject k as z[k] = [z[k]

1 , . . . , z[k]
G ]T ,

which corresponds to the kth columns of Z. In practice, each
element z[k]

g describes the contribution of the gth atom dg to
the representation of the initial FNC-feature vector f [k].

Moreover, every atom dg is as the same dimensionality
as the original FNC-feature vectors. Therefore, by rearrang-
ing the atoms into a symmetric matrix of size N � N , we
can interpret the resulting matrices as we do for the FNCs
. This interpretation again explains the interaction between
brain networks {s[k]

1 , . . . , s[k]
N }, but this time through the new

patterns obtain from the atoms.
By revealing these hidden interpretable patterns and hav-

ing the subject-specific contribution of each of these patterns
through the sparse-feature vectors, we can perform some sta-
tistical analysis on the z[k]’s of the two groups HC and Sz in
order to determine which of these atoms provides discrimina-
tion between the two groups. In this regard, if we divide the
columns of the sparse coefficient matrix into the HC and Sz
groups as Z = [ZHC,ZSz], we can determine if the pattern
corresponding to the gth atom is discriminating or not by do-
ing e.g. a two-sample t-test between the gth rows of ZHC and
ZSz.

Fig.?? illustrates the notion of interpretability and dis-
crimination as well as a comparison of the FNC-feature vector
and the sparse-feature vector.
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In order to obtain the FNCs, we propose using the ICA-
EBM approach described in section 2.1 on resting-state fMRI
data X[k] to get the subject specific time courses A[k] =

[a[k]
1 , . . . ,a[k]

N ] and the N corresponding components S[k] =

[s[k]
1 , . . . , s[k]

N ]T , where X[k] = A[k]S[k]. Additionally, we
align the components across subjects by using the Group-ICA
technique [10], so that the nth components s[k1]

n and s[k2]
n for

subjects k1 and k2 are statically dependent on one another
and reflect nearly the same brain areas. Now that we have the
time courses A[k], we form the FNC for subject k by com-
puting the Pearson correlation between each pair of the time
courses: FNC[k] = (A[k])T A[k] � RN�N , followed by be-
ing z-scored to zero mean and unit variance. Since FNC[k] is
symmetric, for each subject k, we only use the information in
top triangle of the FNC matrix and store it in a vector fk of
size P = N(N�1)

2 as the subject’s FNC-feature vector.

3.2. Sparse representation of FNC features

In this part, we propose the sparse representation of the
subject-specific FNC-feature vectors f [k] = Dz[k]. To this
end, we concatenate the feature vectors of all subjects in
matrix F = [f [1], . . . f [K]], and we consider a common dictio-
nary D � RP�G with G as the number of atoms. Then, the
DL problem will be the same as (P1).

To solve (P1), we perform the technique of alternate min-
imization. The solution to DU at iteration i is obtained by
setting to zero the gradient of the target function in (P1) with
respect to D, and projecting the result to the set D. The result
has a closed form as the following:

(DU): D(i) �� PD
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FZT (ZZT )�1
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, (4)

where PD denotes the projection to the set D. In (SR) step,
(P1) is solved with respect to Z assuming D is fixed. In this
regard, different approaches such as orthogonal matching pur-
suit (OMP) and proximal methods can be used [21,28]. In this
paper, we use iterative proximal-projection approach (IPP)
due to its flexibility to a range of sparsity-promoting func-
tions, including non-convex and non-smooth scenarios [28].
The term proximal mapping refers to a key operator in these
algorithms and is defined as follows:

Definition 1. [32] The proximal mapping of a proper and
lower semicontinuous function r : domr �� (��, +�] at
x � Rn is defined as

proxr(x) = argmin
u�domr
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The proximal approach consists of two main steps 1) the
gradient step, 2) the sparsification step. By defining JZ ,
1
2�F � DZ�2

F , the gradient step will be

(SR-gradient): Z̃ = Z(i-1) � µZ�JZ, (5)

where �JZ = �DT F + DT DZ(i-1), and Z(i-1) is the update
of Z at previous iteration i � 1. Then, the sparsification step
is as follows:

(SR-sparsification): Z[i] �� proxµZ�r(.)(Z̃), (6)

where proxg(.) is the proximal mapping operator in Defini-
tion 1. Different sparsifications can be achieved by selecting
various functions for r(.) and applying the proximal operator.
As two examples, the sparsification step (6) will provide soft-
thresholding if we select the �1-norm i.e. r(.) = �.�1, and
hard-thresholding if we select the �0-norm.

3.3. Interpretability, and discrimination in sparse space

In this part, from the sparse decomposition of the FNC-
features, we aim to introduce a new discriminative feature
vector, along with new interpretable patterns.

To accomplish this goal, we suggest assigning the new
sparse-feature vector of subject k as z[k] = [z[k]

1 , . . . , z[k]
G ]T ,

which corresponds to the kth columns of Z. In practice, each
element z[k]

g describes the contribution of the gth atom dg to
the representation of the initial FNC-feature vector f [k].

Moreover, every atom dg is as the same dimensionality
as the original FNC-feature vectors. Therefore, by rearrang-
ing the atoms into a symmetric matrix of size N � N , we
can interpret the resulting matrices as we do for the FNCs
. This interpretation again explains the interaction between
brain networks {s[k]

1 , . . . , s[k]
N }, but this time through the new

patterns obtain from the atoms.
By revealing these hidden interpretable patterns and hav-

ing the subject-specific contribution of each of these patterns
through the sparse-feature vectors, we can perform some sta-
tistical analysis on the z[k]’s of the two groups HC and Sz in
order to determine which of these atoms provides discrimina-
tion between the two groups. In this regard, if we divide the
columns of the sparse coefficient matrix into the HC and Sz
groups as Z = [ZHC,ZSz], we can determine if the pattern
corresponding to the gth atom is discriminating or not by do-
ing e.g. a two-sample t-test between the gth rows of ZHC and
ZSz.

Fig.?? illustrates the notion of interpretability and dis-
crimination as well as a comparison of the FNC-feature vector
and the sparse-feature vector.

Two-sample
t-test

Reshape

Pattern
interpretation

HC Sz

are derived from the sparse representation of the FNCs from
resting-state fMRI data. Our experimental findings show that
compared to the original FNCs, these new features improve
the the classification performance between groups HC and
Sz. In addition, our suggested approach identifies novel, in-
terpretable biomarkers that provide discrimination between
these two groups.

The rest of this paper is organized as follows: in Section 2
a review on the ICA and DL methods are presented. The de-
tails of the proposed method are discussed in Section 3. Sec-
tion 4 presents the performance of the proposed method. Fi-
nally, the conclusions and perspectives are discussed in Sec-
tion 5.

2. BACKGROUND

This section begins with an overview of the ICA method
based on entropy bound minimization (EBM). Then, the DL
approach for sparse representation of the signals is explained.

2.1. ICA based on entropy bound minimization (EBM)

ICA-EBM [27] is an ICA approach that uses an entropy es-
timator which is based on the maximization of entropy. This
method is well recognized for being compatible with sources
originating from different distributions. By introducing a few
classes of nonlinear functions, these sources can come from
distributions that are sub- or super-Gaussian, unimodal or
multimodal, symmetric or skewed.

Consider the mixture model x(v) = As(v), where
x(v) = [x1(v) . . . xN (v)]T is the observed mixture of
N statically independent random variables (components)
s(v) = [s1(v) . . . sN (v)]T at voxel v through the mixing ma-
trix A � RN�N . Then, the estimation of the components can
be obtained by ŝ(v) = Wx(v), where W � RN�N is the
demixing matrix. From now on, for the sake of simplicity, we
skip denoting the voxel index v. In order to estimate the sep-
aration matrix W, one can leverages the mutual information
(MI) between the N random variables {s1, . . . , sN}:

JMI(W) =
N�

n=1

H(sn) � log|W|�H(x), (1)

where, H(.) denotes the entropy. Consider an arbitrary ran-
dom variable z. In order to numerically estimate the entropy
H(z), ICA-EBM considers m = 1, . . . M measuring func-
tions Qm(z), and minimizes an upper bound estimate of H(z)
over the functions Qm(z)

Ĥ(z) = min
1�m�M

�
H[bound]

m (z)
�

, (2)

where H[bound]
m (z) is as a function of the expectation E{Qm(z)}

being replaced by the sample mean of the observations
{z1, . . . , zP }. Combining (1) and (2), and decoupling the

problem over the coloumns of the demixing matrix wn, the
final ICA-EBM cost is as follows:

JEBM(wn) � �Vm(n){E[Qm(n)(sn)]} � log|h�
n wn|, (3)

where V is the entropy which is calculated based on a nu-
merical approach suggested in [27] section-IV, h�

n is a unit
vector that is perpendicular to all the rows of W except wn,
and m(n) is the minimizer of (2) corresponding to the com-
ponent sn. Thanks to the use of different measuring functions
Qm, ICA-EBM is compatible with source components com-
ing from different distributions.

2.2. Dictionary learning and sparse representation

Dictionary learning (DL) is a decomposition method that pro-
vides a sparse linear representation of the signals on the basis
of a collection of units known as atoms [21].

Consider the feature vector f [k] = [f [k]
1 , . . . , f [k]

P ]T

from dataset k � {1, . . . , K}, and the dictionary D =
[d1, . . . ,dG] � RP�G where the columns are the atoms
of the dictionary with unit norm. Then, the feature vector f [k]

can be modeled as f [k] =
�G

i=1 zgdg , where zg’s are the ele-
ments of the sparse coefficient vector z[k] = [z[k]

1 , . . . , z[k]
G ]T .

Having K datasets, concatenating them gives the matrix
form F = DZ, where F = [f [1], . . . , f [K]] � RP�K and
Z = [z[1], . . . , z[K]] � RG�K . Now, by imposing sparse
assumption on the coefficient matrix Z with the sparse pro-
moting function r and the sparsity hyper-parameter � > 0,
the DL problem is formulated as follows:

min
D,Z

1

2
�F � DZ�2

F +� · r(Z),

s.t. D � D := {D : �dg�2� 1, g = 1, 2, . . . , G}, (P1)

where �.�F is the Frobenius norm. There are a variety of
functions that the sparsity-promoting function r(.) can take,
including the �0 and �1 norms.

Problem (P1) can be solved using the method of alter-
nating minimization, which consists of two steps: dictionary
update (DU), and sparse representation (SR). The DU step
minimizes (P1) across dictionary D while assuming that Z is
fixed, and in (SR) step, (P1) is solved with respect to Z as-
suming D is fixed. Different approaches can be used to go
over these two steps [21, 28–30].

3. PROPOSED METHOD

3.1. Extraction of FNC features

Functional Network Connectivity (FNC) describes the inter-
action between brain networks. It is shown that chronic men-
tal disorders such as schizophrenia are characterized by sig-
nificant abnormalities in brain connections [31]. As a result,
in this paper we employ FNC to study brain functionality.
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and m(n) is the minimizer of (2) corresponding to the com-
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Qm, ICA-EBM is compatible with source components com-
ing from different distributions.
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Dictionary learning (DL) is a decomposition method that pro-
vides a sparse linear representation of the signals on the basis
of a collection of units known as atoms [21].
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where �.�F is the Frobenius norm. There are a variety of
functions that the sparsity-promoting function r(.) can take,
including the �0 and �1 norms.

Problem (P1) can be solved using the method of alter-
nating minimization, which consists of two steps: dictionary
update (DU), and sparse representation (SR). The DU step
minimizes (P1) across dictionary D while assuming that Z is
fixed, and in (SR) step, (P1) is solved with respect to Z as-
suming D is fixed. Different approaches can be used to go
over these two steps [21, 28–30].

3. PROPOSED METHOD

3.1. Extraction of FNC features

Functional Network Connectivity (FNC) describes the inter-
action between brain networks. It is shown that chronic men-
tal disorders such as schizophrenia are characterized by sig-
nificant abnormalities in brain connections [31]. As a result,
in this paper we employ FNC to study brain functionality.

Fig. 1: Proposed framework.

The proximal of the above function is a projection operation that
keeps the  largest elements of |Zts| with setting the rest to 0.

Now, we define JZtr , 1
2kFtr�DZtrk2F+�

2 kLtr�WZtrk2F for
the update of Ztr. With a similar procedure, we obtain the update as
(SR-gradient): rJZtr = �D

T (Ftr �DZtr)� �WT (Ltr �WZtr),
and (SR-sparsification): Ztr  proxµ�r(·)(Ztr � µrJZtr).

The update of the linear classifier W is obtained by setting the
gradient of the target function in (P2) with respect to W to zero.
This results in the closed form expression: W LtrZ

T
tr (ZtrZ

T
tr )

�1.
The final algorithm is summarized in Algorithm 1.

3.2. Interpretability, and discrimination in sparse space

In this part, from the sparse decomposition of the tFNCs, we intro-
duce new discriminative features, and new interpretable patterns. To
accomplish this goal, we suggest assigning the new sparse-feature
vector of subject k as z[k] = [z[k]1 , . . . , z[k]G ]T , corresponding to the
kth columns of Z. Each element z[k]g describes the contribution of the
gth atom dg to the representation of the initial tFNC-feature vector
f [k]. On the other hand, every atom dg has the same dimensional-
ity as the original tFNC-feature vectors. Therefore, by rearranging
the atoms into a symmetric matrix of size N ⇥ N , we can interpret
the resulting matrices as in the tFNCs. This interpretation again ex-
plains the interaction between brain networks {s[k]1 , . . . , s[k]N } where
s[k]n = [s[k]n (v)]T for v = 1, . . . , V representing the voxels, but this
time through the new patterns obtained from the atoms.

Now, we can perform a statistical analysis to determine which
of these atoms provide discrimination between the two groups. For
example, if we divide the columns of the sparse coefficient matrix
into the HC and Sz groups as Z = [Z[HC],Z[Sz]], we can determine
if the pattern corresponding to the gth atom is discriminating or not
by performing a two-sample t-test [30] between the gth rows of Z[HC]

and Z[Sz]. Fig. 1 illustrates the steps for interpretation as well as a
comparison of the FNC-feature with the sparse-feature vector.

4. EXPERIMENTAL RESULTS

4.1. Data preparation

Extraction of FNC-features. We use multi-subject resting state
fMRI (rs-fRMI) data from the bipolar and schizophrenia network
for intermediate phenotypes (BSNIP) dataset [31] considering 179
healthy controls (HC) and 179 patients with schizophrenia (Sz),
using five sites: Baltimore, Chicago, Dallas, Detroit, and Hartford.
All images were collected from a single 5-min run on a 3-T scanner
and all subjects were instructed to have their eyes open and remain
still during the entire scan. The fMRI data were then resampled to
3 ⇥ 3 ⇥ 3 mm3 isotropic voxels and smoothed using a Gaussian

Table 1: Average classification rates [%].

Metric\Feature tFNC Sparse (� = 0) Sparse (� = 0.05)
Recall 74.75± 0.61 73.56± 0.65 75.19± 0.65

Specificity 73.78± 0.70 74.14± 0.70 74.47± 0.68
Precision 74.35± 0.50 74.27± 0.53 74.93± 0.51
Accuracy 74.26± 0.40 73.85± 0.45 74.83± 0.43
F1-score 74.35± 0.40 73.72± 0.46 74.87± 0.45

kernel with a full width at half maximum (FWHM) = 6 mm. Only
the subjects who passed quality control [32] were selected. We
removed the first three timepoints for the following ICA analysis.
Group ICA-EBM [33] is performed to obtain the subject-specific
tFNC-feature vectors f [k]. The order is determined as N = 55 using
the method proposed in [34]. Compared with other ICA algorithms,
ICA-EBM has the flexibility of estimating sources from different
distributions by using a few classes of nonlinear functions. Out of
the 55 estimated components, we selected N = 32 as function-
ally relevant. The size of the tFNC-features was then calculated as
P = N(N�1)

2 = 496.1

Extraction of sparse-features. We obtain subject-specific sparse-
feature vectors z[k] by applying the DL approach presented in Sec-
tion 2.2 on the tFNC-features f [k]. We initialize D and W with DCT
dictionary [15], and Z with a null (zero) matrix. We consider a com-
plete dictionary of size G = P = 496, and the sparsity level is set to
-sparse = 50%. The gradient descent step size is µ = 0.005, and
the number of inner iteration and outer iteration are set to Iterin = 5,
and Iterout = 200, respectively. These values are selected empiri-
cally based on our observation regarding the convergence behaviour
of the sparse representation of the signals. We consider two different
scenarios: 1) � = 0 which represents DL without learning a linear
classifier, and 2) � = 0.05 which considers the linear classifier to
be jointly learned with the dictionary. We randomly select 20% of
the subjects within each group as test set Fts, and we keep the rest
of the data (80%) as the training set Ftr. With the above setup, we
run Algorithm 1 and obtain the sparse coefficients for the subjects in
groups HC and Sz, i.e. Z[HC] and Z[Sz].

4.2. Classification results

In this section, we compare the performance of the tFNC-features
and sparse-features in the classification of HC and Sz groups. In or-
der to achieve this, we train SVM classifiers [35] with polynomial
kernels of order 3, which according to our experiments, provided
the best overall performance. In the training phase, we separately
use features (Ftr,Ltr) and (Ztr,Ltr) to train SVM classifiers SVMFNC

and SVMSPR using sparse-features and FNC-features, respectively.
Then, in the test phase, the test sets Fts and Zts are respectively given
to SVMFNC and SVMSPR, in order to estimate the labels of the test
sets bLFNC

ts and bLSPR
ts . Comparing the estimated test labels with the ac-

tual test label matrix Lts, we evaluate the classification performance
using 5 metrics: recall, specificity, precision, accuracy, and F1-score.
By repeating the classification experiment 100 times with new ran-
dom samples from the training and test sets, we report the average
classification rates in Table 1. We see that all classification metrics
are improved by using sparse features derived from the dictionary
that are jointly learnt with the linear classifier. In addition, as we ad-
dress below, the decomposition provides better interpretability w.r.t.

1The facility is supported by the U.S. National Science Foundation through the
MRI program (grant nos. CNS-0821258, CNS-1228778, and OAC-1726023) and
the SCREMS program (grant no. DMS-0821311).
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Fig. 2: Statistical analysis of the sparse coefficient corresponding to
the 99 discriminative atoms obtained from the two-sample t-test be-
tween the sparse coefficients z[HC]

g and z[Sz]
g . Top: the ratio between

the average energy and, middle: the ratio between the skewness of
z[HC]
g and z[Sz]

g . Bottom: the histogram of z[HC]
g and z[Sz]

g for g = 82.

Sz and HC differences.

4.3. Discriminant atoms and their interpretability

In order to find the discriminative atoms and tFNC-features between
groups HC and Sz, we apply two-sample t-test followed by false
discovery rate (FDR) correction [36]. For the FNC-features, the
two-sample t-test is applied on the pth feature vectors f [HC]

p and f [Sz]
p ,

which correspond to the subject indices in groups HC and Sz, respec-
tively. We found 113 discriminative FNC-features out of P = 496.
We repeated the two-sample t-test for the sparse coefficients corre-
sponding to the gth atom z[HC]

g and z[Sz]
g (see Fig. 1), and we identified

99 atoms (patterns) that discriminate between HC and Sz groups.
The sparse coefficients provide us with a statistical population

that can be further analyzed for better understanding of the contribu-
tion of each discriminative atoms in the two groups. In Fig. 2, the top
plot shows the ratio between the average energy of the sparse coeffi-
cients for HC and Sz groups i.e. ER = 10 log(||z[kHC]

g ||22/||z[kSz]
g ||22).

Here, g represents one of the 99 discriminant atoms specified by
the two-sample t-test. The atoms with energy ratios above 0 are
those with higher energies for the HC group, which indicates
that they dominant in the HC group, i.e., contribute more to the
representation of tFNC-features for the HC group. The discrim-
inative atoms that are dominant in Sz group are also indicated
by points below the threshold of zero. Also, a higher absolute
value |ER| indicates a higher energy difference between the two
groups. The middle plot in Fig. 2 reports the ratio between the
skewness of the sparse coefficients for HC and Sz groups, i.e.,
SkewR = 10 log(|skew(z[kHC]

g )|/|skew(z[kSz]
g )|). Similarly, atoms

with positive values of SkewR are more skewed in the distribution
of z[HC]

g , and vice versa for the atoms with negative SkewR. A larger
absolute value |SkewR| indicates more skewness difference between
the two groups. The bottom plot in Fig. 2 shows the histogram of the
sparse coefficients for a sample discriminative atom g = 64. From
the histogram, we can visually verify that the sparse coefficients
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Fig. 3: Weighted average of the discriminative atoms that are a)
dominant in HC, and b) dominant in Sz groups. More modularity
is observed in HC.

corresponding to this atom have larger energy in Sz group and the
skewness in the distribution of the sparse coefficients is higher in
this group.

Besides information from the statistical analysis of the sparse
coefficients, we can interpret the discriminative atoms by reshaping
them to a symmetric matrix of size N⇥N which has the same shape
as the tFNC. Fig. 3 shows the average pattern corresponding to the
first 15 dominant atoms in Sz and HC groups with the largest en-
ergy ratios (according to Fig. 2-top). The results are shown with ae
threshold level of 0.25. The pattern in Fig. 3-(a) constitutes 6.7% of
the overall energy in Z[HC], while it is only 3.5% in Z[Sz]. These con-
tributions for Fig. 3-(b), are 1.3% and 2.7% for HC and Sz groups,
respectively. We note that there is a large difference in the energy
between the two groups. This increases our confidence about the
discrimination of these patterns between the two groups. in Fig. 3
we can see that these atoms show different patterns in terms of the
interaction between different brain networks. Comparing Fig. 3 (a)
and (b), we can see more modularity in HC with a swath of nega-
tive values in between sensory and DMN to subcortical and frontal
regions, which suggests that SZ appears less anatomically organized
and structured with more extreme values, as also observed in the
histogram Fig. 2-bottom.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented the sparse representation of the subject-
specific brain temporal functional network connectivity obtained
from independent component analysis of the resting-state multi-
subject fMRI dataset. To this end, we suggested to jointly learn a
dictionary for the sparse representation of the tFNC features and a
linear classifier to determine whether the subjects should be clas-
sified as HC or Sz using sparse coefficients as features. Compared
with the FNC features, using sparse features, the classification rates
improve. More importantly, we identify new discriminative patterns
formed from dictionary atoms that can be interpreted as tFNC fea-
tures, i.e., revealing patterns of interaction between brain networks.
This work also provides new perspectives for studying dynamics
of fMRI to further investigate brain functionality. Also, learning a
non-linear classifier jointly with the dictionary can be used to further
improve the classification rates [37], and the approach can be easily
extended to multiple sets of fMRI data [38, 39].
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ica for fmri data and ica for joint inference of imaging, genetic and
erp data,” NeuroImage, vol. 45, no. 1, pp. S163–S172, 2009.

[24] E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and
V. D. Calhoun, “Tracking whole-brain connectivity dynamics in the
resting state,” Cerebral Cortex, vol. 24, no. 3, pp. 663–676, 2014.

[25] F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee,
M. Skoglund, and C. Jutten, “Sparse signal recovery using iterative
proximal projection,” IEEE Transactions on Signal Processing, vol.
66, no. 4, pp. 879–894, 2018.

[26] F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Accel-
erated dictionary learning for sparse signal representation,” Interna-
tional Conf. on LVA and Signal Separation, pp. 531–541, 2017.

[27] M. Sadeghi, F. Ghayem, M. Babaie-Zadeh, S. Chatterjee,
M. Skoglund, and C. Jutten, “L0soft: `0 minimization via soft thresh-
olding,” European Signal Processing Conference (EUSIPCO), 2019.

[28] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary learn-
ing in face recognition,” in IEEE Computer Society Conf. on CVPR.
IEEE, 2010, pp. 2691–2698.

[29] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 123–231, 2014.

[30] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908.
[31] C. A. Tamminga et al., “Clinical phenotypes of psychosis in

the bipolar-schizophrenia network on intermediate phenotypes (B-
SNIP),” American Journal of psychiatry, vol. 170, no. 11, pp. 1263–
1274, 2013.

[32] Y. Du et al., “Evidence of shared and distinct functional and struc-
tural brain signatures in schizophrenia and autism spectrum disorder,”
Communications biology, vol. 4, no. 1, pp. 1–16, 2021.

[33] X. L. Li and T. Adali, “Independent component analysis by entropy
bound minimization,” IEEE Transactions on Signal Processing, vol.
58, no. 10, pp. 5151–5164, 2010.

[34] G. S. Fu, M. Anderson, and T. Adalı, “Likelihood estimators for
dependent samples and their application to order detection,” IEEE
trans. on signal processing, vol. 62, no. 16, pp. 4237–4244, 2014.

[35] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-
ing, vol. 20, no. 3, pp. 273–297, 1995.

[36] Y. Benjamini and D. Yekutieli, “False discovery rate–adjusted multi-
ple confidence intervals for selected parameters,” JASA, vol. 100, no.
469, pp. 71–81, 2005.

[37] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. Bach, “Super-
vised dictionary learning,” Advances in neural information process-
ing systems, vol. 21, 2008.

[38] K. Lee, S. Tak, and J. C. Ye, “A data-driven sparse GLM for fMRI
analysis using sparse dictionary learning with MDL criterion,” IEEE
Trans. on Medical Imaging, vol. 30, no. 5, pp. 1076–1089, 2010.

[39] A. K. Seghouane and A. Iqbal, “Sequential dictionary learning from
correlated data: Application to fMRI data analysis,” IEEE Transac-
tions on image Processing, vol. 26, no. 6, pp. 3002–3015, 2017.

Authorized licensed use limited to: INRIA. Downloaded on February 16,2024 at 08:22:25 UTC from IEEE Xplore.  Restrictions apply. 


