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ABSTRACT

Independent component analysis (ICA) of multi-subject functional
magnetic resonance imaging (fMRI) data has proven useful in pro-
viding a fully multivariate summary that can be used for multiple
purposes. ICA can identify patterns that can discriminate between
healthy controls (HC) and patients with various mental disorders
such as schizophrenia (Sz). Temporal functional network connec-
tivity (tFNC) obtained from ICA can effectively explain the interac-
tions between brain networks. On the other hand, dictionary learn-
ing (DL) enables the discovery of hidden information in data using
learnable basis signals through the use of sparsity. In this paper, we
present a new method that leverages ICA and DL for the identifica-
tion of directly interpretable patterns to discriminate between the HC
and Sz groups. We use multi-subject resting-state fMRI data from
358 subjects and form subject-specific tFNC feature vectors from
ICA results. Then, we learn sparse representations of the tFNCs and
introduce a new set of sparse features as well as new interpretable
patterns from the learned atoms. Our experimental results show that
the new representation not only leads to effective classification be-
tween HC and Sz groups using sparse features, but can also identify
new interpretable patterns from the learned atoms that can help un-
derstand the complexities of mental diseases such as schizophrenia.

Index Terms— ICA, dictionary learning, functional network
connectivity, multi-subject data, resting-state fMRI

1. INTRODUCTION

An important goal in neuroscience is the development of methods
for identifying interpretable patterns that provide discrimination be-
tween healthy controls (HC) and different groups of patients. Func-
tional magnetic resonance imaging (fMRI) has proven useful for the
study of healthy brain as well as different brain disorders, including
schizophrenia (Sz) [1-3]. However, the high dimensionality struc-
ture and the noisy nature of fMRI data cause some challenges. In-
dependent component analysis (ICA) has proven particularly useful
for feature selection and statistical analysis of fMRI data [4-6].
ICA is a data-driven approach that decomposes the fMRI data
into a set of independent components and their corresponding time
courses (TC). Unlike classical model-driven methods, such as the
general linear model (GLM) [7] that requires predefined model pa-
rameters, ICA decomposes brain activities into functional networks
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that are maximally independent. By concatenating individual sub-
ject data and applying one ICA estimation on the aggregate data,
group ICA (GICA) [8] generalizes ICA to multi-subject analysis that
provides for group inferences. The brain networks that are identi-
fied by ICA can be used for studying the inter-network relationships
through temporal functional network connectivity (tFNC): the Pear-
son correlations between pairs of TCs. tFNC has been shown to be
highly informative, for instance, chronic mental disorders such as
schizophrenia are characterized by significant abnormalities in brain
connections [9, 10].

Deep learning methods are also frequently used to detect dis-
criminating biomarkers, but the findings are not directly inter-
pretable and additional steps such as relevance propagation are
typically needed [11-14]. In contrast, matrix decompositions such
as dictionary learning offer a sparse linear decomposition of the
signals based on a set of interpretable bases called atoms [15].
These techniques have shown to extract new, easily comprehensible
patterns from the data, revealing data’s hidden information [16-21].

In this paper, we develop a method to extract a set of power-
ful features from resting state fMRI data by bringing together the
advantages of ICA and DL. Given that tFNCs are effective in differ-
entiating between the HC and Sz groups, these new features are de-
rived from the sparse representation of the tFNCs from resting-state
fMRI data. Our experimental findings show that compared with the
original tFNCs, these new features help improve the classification
performance between HC and Sz groups. In addition, the approach
identifies novel, interpretable biomarkers that help explain the com-
plexities of brain disorders such as schizophrenia.

In the rest of this paper, Section 2 reviews the ICA and DL meth-
ods. The proposed framework is discussed in Section 3. Section 4
presents experimental results. The conclusions and perspectives are
discussed in Section 5.

2. BACKGROUND

In this section, we first provide a background on how the functional
network connectivity features we make use of are created. Then, we
review dictionary learning, a central element of our method.

2.1. Functional network connectivity using group ICA

Consider the mixture model x(v) = As(v), where x(v) is the ob-
served mixture of NV statistically independent signals (components)
s(v) = [s1(v)...sn(v)]" at voxel v mixed via A. The compo-
nents can be estimated as §(v) = Wx(v), where W € RV* s
a demixing matrix, which can be obtained by ICA. We make use
of GICA [22], where temporal concatenation of subject datasets is
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applied to form group data followed by performing one ICA on the
group data. The subject-specific result can be achieved by back-
reconstruction, which allows the comparison of spatial maps and
time courses across subjects, while also addressing the issue with
permutation ambiguity inherent in the ICA [23]. The temporal in-
teractions between brain networks for the k™ subject can be pre-
sented as tFENCFl ¢ RNV*V through the Pearson correlation be-
tween time courses from A %!, which underwent postprocessing pro-
cedure in [24]. Since tFNCH s symmetric, for subject k, we only
use its upper triangular data, and arrange them in vector f (%] of size
pP= N(fol) to serve as the subject’s FNC-feature vector.

2.2. Dictionary learning and sparse representation

Dictionary learning is the task of estimating a set of basis signals,
called atoms, using a training dataset such that each training sam-
ple can be written as a sparse linear combination of the learned
atoms. Mathematically, consider some training feature vectors
flel = [fl[k], R f}[f]]T collected as the columns of the matrix
F = [f1 ... fi5] € RP*K. Then, the goal is to learn a dic-
tionary D = [di,...,dg] € RF*Y, with G as the number of
atoms, such that F = DZ and the columns of the coefficient matrix
Z = [z, ... 28] € RE*X are sparse. That is, each feature
vector fI¥! can be written as fi¥) = Zil zgdg, where most of
zg4’s are zeros. To learn D, a sparsity promoting function denoted
r is considered to impose a sparsity constraint on the coefficient
matrix Z. The dictionry learning problem is then formulated as
follows [15]:

1 5
win 5 |[F — DZ|z+A-r(Z),
st. DeD:={D:|dyl2=1,9=1,2,...,G}, (P1)

where ||.|| 7 is the Frobenius norm, and A > 0 is a sparsity parameter.

Problem (P1) can be solved using alternating minimization,
which iterates between two steps: dictionary update (DU), and
sparse representation (SR). The DU step minimizes (P1) across dic-
tionary D while assuming that Z is fixed, and in (SR) step, (P1) is
solved with respect to Z assuming D is fixed. Different approaches
can be used to alternate between these two steps [15,25-27].

3. METHODOLOGY

In this section, we propose the sparse representation of the FNC-
features from fMRI data, and show how it reveals new interpretable
patterns that can provide discrimination between HC and Sz.

3.1. Joint classifier and dictionary learning for FNC-features

We propose to jointly learn a linear classifier and a dictionary to find
the sparse representations of the FNC-feature vectors £/ = Dz["l,
We concatenate the feature vectors of all subjects in matrix F =
[£14, .. £I%]] and consider a common dictionary D € R”* with
G as the number of atoms. Then, the DL problem will be as in (P1).
To jointly learn a linear classifier with the dictionary D, we use the
binary labels 1"9 = [0,1]" and 159 = [1,0]” for HC and Sz
groups, respectively. So, with a linear classifier W € R2*| the
label of subject k can be estimated as 1] = Wz, We denote
the data corresponding to training and test sets with subscript “tr”,
and “ts”, respectively. By concatenating the labels for K, training

[Ku
’ llr

datasets in the label matrix L, = [lt[r1 ], .. ]], we have L, =

Algorithm 1 Proposed method for solving (P2)

1: Inputs: Fy, F, Ly, &, G, p, 8, Itetin, Iteroy

2: Initialization: D & W: DCT,Z = [0]ax x

3: for i =1 : Iteroy do

4: for j = 1 : Iteri, do

5 SR-gradient:

6: VI, = -D’'F + D"DZ

7: VIz, = -D7(Fy — DZ,) — BW”T (Ly — WZy)
8

9

SR-sparsification:

: Zis — proxu)\r(,)(ztS —uVIz)
10: Zy proxMr(,)(Zn — uVIz,)
11: end for
12: Z  [Zy,Zs)

13 DU:D+ Pp (FZT(ZZT)*)

14: Classifier update: W« LZT (Z,ZT)™!
15: end for

16: Output: D, Z, W

WZ;. Inspired by [28], we add this equality as a discriminative
penalty with parameter [ to the cost function in (P1), and solve the
following problem:

. 1
uin S|P~ D24 r(Z) + 5 Lo~ Wl

st DeED:={D:|dyla=1,9g=1,2,...,G}. (P2)

We note that in the above formulation, we consider to update the dic-
tionary D using the whole dataset F = [F, Fys] and Z = [Zy, Zy],
while for the classification term, we only involve the training labels.

To solve (P2), we perform alternating minimization. At iteration
1, dictionary update (DU) is obtained by setting the gradient of the
target function with respect to D to zero, and projecting the result to
the set D. This results in a closed form expression (DU): D) «+

Pp (FZT(ZZT)’l) , where Pp is the projection on the set D.

In the sparse representation (SR) step, different approaches such
as orthogonal matching pursuit (OMP) and proximal methods can be
used [15,25]. Here, we use iterative proximal-projection approach
due to its flexibility to a range of sparsity-promoting functions, in-
cluding non-convex and non-smooth scenarios [25]. The proximal
mapping is a key operator in these algorithms defined as:

Definition 1. [29] The proximal mapping of a proper and lower
semicontinuous function v : dom, — (—oo0,+o0] atx € R" is
prox, (x) = argminegom, {3 /1% — ullf+r(u)}.

We first decompose the sparse coefficients into training and
testing sets, and we separately update Z; and Z using proximal
method. The proximal approach consists of two steps: 1) gradient
step, 2) sparsification step. We start with updating Z. By defining
Jz, £ 1||Fs — DZ||%, the gradient step is VJz, = —D"Fy +
DT DZ,. Then, the sparsification step is (SR-sparsification): Z <
Prox,, .. (Zs — pVJz,), where prox,(-) is given in Definition 1.
Selecting various functions for r(-) results in different sparsifi-
cations. For example, the SR-sparsification step will be soft-
thresholding if we use the ¢;-norm, and hard-thresholding if we
use the £p-norm. In this paper, we consider a k-sparse constraint,

and set
0 if ||Zs]lo<
T(th) £ { ' H ‘ HO " . (1)

o0 O0.W.
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Fig. 1: Proposed framework.

The proximal of the above function is a projection operation that
keeps the « largest elements of |Z| with setting the rest to 0.

Now, we define Jz, £ 1||Fy — DZtrH%—i-g |Le — WZy||3 for
the update of Z. With a similar procedure, we obtain the update as
(SR-gradient): VJz, = —D” (Fy — DZ) — BW (Ly — WZy),
and (SR-sparsification): Z < ProX,, 5. (Zee — pVIz,).

The update of the linear classifier W is obtained by setting the
gradient of the target function in (P2) with respect to W to zero.
This results in the closed form expression: W < L.ZT (ZUZE )~ L
The final algorithm is summarized in Algorithm 1.

3.2. Interpretability, and discrimination in sparse space

In this part, from the sparse decomposition of the tFNCs, we intro-
duce new discriminative features, and new interpretable patterns. To
accomplish this goal, we suggest assigning the new sparse-feature
vector of subject k as z* = [zgk], e Z[C];]]T, corresponding to the
k™ columns of Z. Each element zg“] describes the contribution of the
g™ atom d, to the representation of the initial tFNC-feature vector
f[¥1. On the other hand, every atom d, has the same dimensional-
ity as the original tFNC-feature vectors. Therefore, by rearranging
the atoms into a symmetric matrix of size N x N, we can interpret
the resulting matrices as in the tFNCs. This interpretation again ex-
plains the interaction between brain networks {s[lk], e SE\I;]} where
sl = [sg“] (v)]* forv = 1,...,V representing the voxels, but this
time through the new patterns obtained from the atoms.

Now, we can perform a statistical analysis to determine which
of these atoms provide discrimination between the two groups. For
example, if we divide the columns of the sparse coefficient matrix
into the HC and Sz groups as Z = [Z"C), Z54], we can determine
if the pattern corresponding to the g™ atom is discriminating or not
by performing a two-sample t-test [30] between the g™ rows of AR
and ZP7. Fig. 1 illustrates the steps for interpretation as well as a
comparison of the FNC-feature with the sparse-feature vector.

4. EXPERIMENTAL RESULTS

4.1. Data preparation

Extraction of FNC-features. We use multi-subject resting state
fMRI (rs-fRMI) data from the bipolar and schizophrenia network
for intermediate phenotypes (BSNIP) dataset [31] considering 179
healthy controls (HC) and 179 patients with schizophrenia (Sz),
using five sites: Baltimore, Chicago, Dallas, Detroit, and Hartford.
All images were collected from a single 5-min run on a 3-T scanner
and all subjects were instructed to have their eyes open and remain
still during the entire scan. The fMRI data were then resampled to
3 x 3 x 3 mm® isotropic voxels and smoothed using a Gaussian

Table 1: Average classification rates [%)].

[ Metric\Feature | tFNC | Sparse (8 =0) | Sparse (8 =0.05) |
Recall 74.75 £ 0.61 73.56 £ 0.65 75.19 4+ 0.65
Specificity 73.78 £0.70 74.14 £ 0.70 74.47 + 0.68
Precision 74.35 £ 0.50 74.27 £0.53 74.93 +£0.51
Accuracy 74.26 £0.40 | 73.851+0.45 74.83 +£0.43
Fl-score 74.35+0.40 | 73.72+0.46 74.87 +0.45

kernel with a full width at half maximum (FWHM) = 6 mm. Only
the subjects who passed quality control [32] were selected. We
removed the first three timepoints for the following ICA analysis.
Group ICA-EBM [33] is performed to obtain the subject-specific
tFNC-feature vectors fI*/. The order is determined as N = 55 using
the method proposed in [34]. Compared with other ICA algorithms,
ICA-EBM has the flexibility of estimating sources from different
distributions by using a few classes of nonlinear functions. Out of
the 55 estimated components, we selected N = 32 as function-
ally relevant. The size of the tFNC-features was then calculated as
P =NO=D — 496!

Extraction of sparse-features. We obtain subject-specific sparse-
feature vectors z!*! by applying the DL approach presented in Sec-
tion 2.2 on the tENC-features £1*1. We initialize D and W with DCT
dictionary [15], and Z with a null (zero) matrix. We consider a com-
plete dictionary of size G = P = 496, and the sparsity level is set to
r-sparse = 50%. The gradient descent step size is u = 0.005, and
the number of inner iteration and outer iteration are set to Iter;, = 5,
and Itero,, = 200, respectively. These values are selected empiri-
cally based on our observation regarding the convergence behaviour
of the sparse representation of the signals. We consider two different
scenarios: 1) 8 = 0 which represents DL without learning a linear
classifier, and 2) 8 = 0.05 which considers the linear classifier to
be jointly learned with the dictionary. We randomly select 20% of
the subjects within each group as test set Fys, and we keep the rest
of the data (80%) as the training set F,. With the above setup, we
run Algorithm 1 and obtain the sparse coefficients for the subjects in
groups HC and Sz, i.e. ZM) and Z59.

4.2. Classification results

In this section, we compare the performance of the tFNC-features
and sparse-features in the classification of HC and Sz groups. In or-
der to achieve this, we train SVM classifiers [35] with polynomial
kernels of order 3, which according to our experiments, provided
the best overall performance. In the training phase, we separately
use features (Fy,Ly) and (Zi,Ly) to train SVM classifiers SVM™C
and SVMS™R using sparse-features and FNC-features, respectively.
Then, in the test phase, the test sets F's and Zi, are respectively given
to S\A/MFNC and SVMS™R in order to estimate the labels of the test
sets LINC and L3R Comparing the estimated test labels with the ac-
tual test label matrix L, we evaluate the classification performance
using 5 metrics: recall, specificity, precision, accuracy, and F1-score.
By repeating the classification experiment 100 times with new ran-
dom samples from the training and test sets, we report the average
classification rates in Table 1. We see that all classification metrics
are improved by using sparse features derived from the dictionary
that are jointly learnt with the linear classifier. In addition, as we ad-
dress below, the decomposition provides better interpretability w.r:z.

!"The facility is supported by the U.S. National Science Foundation through the
MRI program (grant nos. CNS-0821258, CNS-1228778, and OAC-1726023) and
the SCREMS program (grant no. DMS-0821311).
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Fig. 2: Statistical analysis of the sparse coefficient corresponding to
the 99 discriminative atoms obtained from the two-sample t-test be-
tween the sparse coefficients ZLHC] and ZLSZ]. Top: the ratio between

the average energy and, middle: the ratio between the skewness of

2" and 21" Bottom: the histogram of z}"” and 25 for g = 82.
Sz and HC differences.

4.3. Discriminant atoms and their interpretability

In order to find the discriminative atoms and tFNC-features between
groups HC and Sz, we apply two-sample t-test followed by false
discovery rate (FDR) correction [36]. For the FNC-features, the
two-sample t-test is applied on the p™ feature vectors f;[,HC] and fT[,SZ],
which correspond to the subject indices in groups HC and Sz, respec-
tively. We found 113 discriminative FNC-features out of P = 496.
We repeated the two-sample t-test for the sparse coefficients corre-
sponding to the g™ atom z [gHC] and z [gsz] (see Fig. 1), and we identified
99 atoms (patterns) that discriminate between HC and Sz groups.
The sparse coefficients provide us with a statistical population
that can be further analyzed for better understanding of the contribu-
tion of each discriminative atoms in the two groups. In Fig. 2, the top
plot shows the ratio between the average energy of the sparse coeffi-
cients for HC and Sz groups i.e. Eg = 10log(] |z[gk”d [13/] |z£,k5’] 13).
Here, g represents one of the 99 discriminant atoms specified by
the two-sample t-test. The atoms with energy ratios above O are
those with higher energies for the HC group, which indicates
that they dominant in the HC group, i.e., contribute more to the
representation of tFNC-features for the HC group. The discrim-
inative atoms that are dominant in Sz group are also indicated
by points below the threshold of zero. Also, a higher absolute
value |Egr| indicates a higher energy difference between the two
groups. The middle plot in Fig. 2 reports the ratio between the
skewness of the sparse coefficients for HC and Sz groups, i.e.,
Skewr = 10log(|skew(z£7k”d)|/|skew(z[gks"])\). Similarly, atoms
with positive values of Skewr are more skewed in the distribution
of ZLHC], and vice versa for the atoms with negative Skewr. A larger
absolute value |Skewr| indicates more skewness difference between
the two groups. The bottom plot in Fig. 2 shows the histogram of the
sparse coefficients for a sample discriminative atom g = 64. From
the histogram, we can visually verify that the sparse coefficients

Y
RO RiC

o bﬁg“oﬁ‘ PG

B
o= »@&@%ﬁ@ USRS o

@ > dgigsz] for g’s dominant in Sz b > dgigsz] for g’s dominant in HC
Fig. 3: Weighted average of the discriminative atoms that are a)
dominant in HC, and b) dominant in Sz groups. More modularity
is observed in HC.

corresponding to this atom have larger energy in Sz group and the
skewness in the distribution of the sparse coefficients is higher in
this group.

Besides information from the statistical analysis of the sparse
coefficients, we can interpret the discriminative atoms by reshaping
them to a symmetric matrix of size /N X N which has the same shape
as the tFNC. Fig. 3 shows the average pattern corresponding to the
first 15 dominant atoms in Sz and HC groups with the largest en-
ergy ratios (according to Fig. 2-top). The results are shown with ae
threshold level of 0.25. The pattern in Fig. 3-(a) constitutes 6.7% of
the overall energy in 7 while it is only 3.5% in Z5% These con-
tributions for Fig. 3-(b), are 1.3% and 2.7% for HC and Sz groups,
respectively. We note that there is a large difference in the energy
between the two groups. This increases our confidence about the
discrimination of these patterns between the two groups. in Fig. 3
we can see that these atoms show different patterns in terms of the
interaction between different brain networks. Comparing Fig. 3 (a)
and (b), we can see more modularity in HC with a swath of nega-
tive values in between sensory and DMN to subcortical and frontal
regions, which suggests that SZ appears less anatomically organized
and structured with more extreme values, as also observed in the
histogram Fig. 2-bottom.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented the sparse representation of the subject-
specific brain temporal functional network connectivity obtained
from independent component analysis of the resting-state multi-
subject fMRI dataset. To this end, we suggested to jointly learn a
dictionary for the sparse representation of the tFNC features and a
linear classifier to determine whether the subjects should be clas-
sified as HC or Sz using sparse coefficients as features. Compared
with the FNC features, using sparse features, the classification rates
improve. More importantly, we identify new discriminative patterns
formed from dictionary atoms that can be interpreted as tFNC fea-
tures, i.e., revealing patterns of interaction between brain networks.
This work also provides new perspectives for studying dynamics
of fMRI to further investigate brain functionality. Also, learning a
non-linear classifier jointly with the dictionary can be used to further
improve the classification rates [37], and the approach can be easily
extended to multiple sets of fMRI data [38,39].
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