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ABSTRACT

Identification of subgroups of subjects homogeneous functional
networks is a key step for precision medicine. Independent vec-
tor analysis (IVA) is shown to be effective for this task, however,
it has a substantial computing cost. We propose a constrained in-
dependent component analysis algorithm based on minimizing the
entropy bound (c-EBM) to overcome the computational complexity
limitation of IVA. A set of spatial maps used as constraints provides
a connection across the datasets, provides alignment across subject-
wise ICA analyses and serves as a foundation for subgroup identi-
fication. The approach makes use of the available prior knowledge
while allowing flexible density modeling without an orthogonality
requirement for the demixing matrix. Synthetic data and large scale
multi-subject resting state fMRI data have both been used to eval-
uate the performance of the new algorithm, c-EBM. The findings
demonstrate that c-EBM is adaptable in terms of various settings for
the constraint parameter on the synthetic data. With multi-subject
resting state fMRI data, c-EBM can effectively identify subgroups
and discover meaningful brain networks that show significant group
differences between subgroups.

Index Terms— subgroup identification, constrained ICA, multi-
subject data, resting state fMRI, precision medicine

1. INTRODUCTION

Precision medicine aims to provide individualized medical care for
individual patients by precisely identifying subgroups based on key
characteristics of patients. Numerous subtypes from various disease
domains have been proposed, including those for neuropsychiatric
conditions like autism [1], bipolar disorder [2], schizophrenia [3],
and major depression [4]. Patients can be divided into heterogeneous
subpopulations (subgroups) based on the corresponding biomarkers
of these subtypes. Classifying neuropsychiatric patients is a signif-
icant difficulty in precision medicine because the etiology of neu-
ropsychiatric illnesses is uncertain [5–8]. Focusing on clustering
subjective data, such as behavioral characteristics, clinical, cogni-
tive, or other related scores, is one approach to solving this challenge
[9, 10]. However, the relationship between subtypes and post hoc
descriptions is not well understood, hence the success of such ap-
proaches is limited. Functional magnetic resonance imaging (fMRI)
has been widely used to study functional connectivity of the brain,
and these networks are identified to be unique as fingerprints [11,12].

This work was supported in part by NSF-NCS 1631838, NSF 2112455,
and NIH grants R01 MH118695, R01 MH123610, R01 AG073949. The
hardware used in the computational studies is part of the UMBC High Per-
formance Computing Facility (HPCF): hpcf.umbc.edu.

Identification of putative biomarkers of neuropsychiatric disorders
using independent component analysis (ICA) is shown to be effec-
tive [13–19]. Group ICA (GICA) [20] is a commonly used method
for multi-subject data analysis using ICA by vertically concatenat-
ing the subject datasets and performing one ICA on the group data.
However, GICA assumes common spatial maps across subject and
only incorporates subject variability through the back reconstruction
step. On the other hand, extention of ICA to multiple datasets, in-
dependent vector analysis (IVA) is shown to better preserve subject
variability [19, 21–24], and has been shown to successfully identify
subgroups of patients [25]. However, IVA is computationally com-
plex as it requires computation of multivariate density whose dimen-
sionality depends on the number of datasets (subjects), and hence,
e.g., in [25] only a subset of 50 patients are used in the analysis.

Constrained ICA (c-ICA) can be used to analyze multi-subject
data by making use of constraints to link multiple subjects. The
connection across subjects is established by the aligned components
through the constraint and the overall source separation performance
can improve with the provided prior information, such as in the form
of spatial maps that model functional connectivity networks [26–30].
As c-ICA is applied to individual subjects, it avoids the penalty in
the cost of IVA caused by over-parameterization while maintain-
ing subject variability compared with GICA [31]. A current ap-
proach to constrained ICA makes use of orthogonality constraint
on the demixing matrix and uses fixed nonlinearity limiting its per-
formance [28–30]. The orthogonality constraint limits the solution
space, also limiting the performance [32].

To address the aforementioned problems, we introduce con-
strained EBM (c-EBM), which is based on minimizing the bound on
source entropy [33]. In conjunction with allowing subject datasets
fully interact via constraints, our approach also provides a flexible
match to source probability distributions and is able to decouple
the demixing matrix without imposing an orthogonality constraint.
Simulated datasets and large scale multi-subject resting state fMRI
data are utilized to evaluate the effectiveness of the c-EBM. On
simulated data, the comparison with the recent constrained ICA
method, multi-objective optimization ICA with a reference (MOO-
ICAR) [30] reveals that c-EBM is more adaptable to various con-
straint parameter settings. With multi-subject resting state fMRI data
from 88 subjects, we show that c-EBM provides promising perfor-
mance in the identification of subgroups of subjects and discovering
meaningful brain networks including visual, primary sensory, and
motor area that show significant group differences between sub-
groups. Compared with MOO-ICAR, the results from c-EBM have
lower average normalized mutual information between estimated
sources, indicating better separation performance. In addition, the
work demonstrates the replicability of subgroup results in [25] for aIC
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larger number of patients.
The rest of this paper is organized as follows: the background for

ICA is presented in Section 2. The details of the proposed method c-
EBM and its application on subgroup identification are in Section 3
and Section 4. Simulation results are presented in Section 5, fol-
lowed by the discussion in Section 6.

2. BACKGROUND

Let x(v) = [x1(v), . . . , xN (v)]⊤ be the observation vector (e.g.
from a single subject) modeled by x(v) = As(v) at sample in-
dex v, where s(v) = [s1(v), . . . , sN (v)]⊤ are N statistically in-
dependent zero mean latent sources and A ∈ RN×N is an invert-
ible mixing matrix. The estimation of the dataset’s latent sources
y(v) = [y1(v), . . . , yN (v)]⊤ can be achieved by y(v) = Wx(v),
where W is the demixing matrix. For simplicity, the sample index
v is suppressed in the rest of this paper. We can write the cost func-
tion J (W) as mutual information among source estimates yn for
n = 1, . . . , N , which is a function of the demixing matrix W as
follows

J (W) =

N∑
n=1

H(yn)− log|det(W)|−H(x), (1)

where H(yn) represents the (differential) entropy of the nth esti-
mated source yn, H(x) is the entropy of x and hence is constant
with respect to W, and log|det(W)| acts as a regularization term.
Now in order to identify the demixing matrix W for the estimation
of the latent sources, we minimize J (W) with respect to W. To
minimize J (W) with respect to W, it is required to know the dis-
tribution of the latent sources yn in order to calculateH(yn). In the
ICA algorithm based on entropy bound minimization (EBM) [33],
entropy is estimated by estimating an upper bound among several
measuring functions that come from various distributions. The flexi-
ble density estimation strategy of EBM provides a more accurate and
reliable source separation performance as compared with many other
ICA algorithms [33, 34]. For this reason, in this paper we choose
ICA-EBM for our constrained ICA approach.

An orthogonal W helps decouple the estimation of density for
each source, hence providing better model match. However, the or-
thogonality constraint of W limits the solution space of W. An
effective decoupling method [35] without constraining W to be or-
thogonal is applied to (1) to divide the original problem into a series
of sub-problems that minimize the mutual information among the es-
timated sources with respect to each row vector wn, corresponding
to each individual source yn. After decoupling, (1) can be written as

Jn(wn) = H(yn)− log|d⊤
nwn|+C, (2)

where C is a constant that is independent of wn and d⊤
n is a unit

vector that is perpendicular to all the rows of W except wn [35].
Based on the entropy estimator proposed in [33], the cost function
of ICA-EBM can be written as

Jn(wn) = −Om(n){E[Gm(n)(yn)]} − log|d⊤
nwn|+C1, (3)

where Om(n)

{
E[Gm(n)(yn)]

}
is the negentropy of the nth esti-

mated source, C1 is a constant that is independent of wn, and Gm(n)

is a measure function selected from M measure functions for the nth

source. We note that m = 1, . . . ,M is a function of n since dif-
ferent measuring functions can be used for different sources. In this
paper, we consider M = 4 measuring functions G(x): x4, |x|

1+|x| ,

x|x|
10+|x| ,

x
1+x2 . Also, we note that the negentropy function O(·) is

calculated beforehand and saved as a table.

3. CONSTRAINED EBM

With the decoupled cost function (3), constraints can be applied
for individual sources without assuming orthogonality of W. For
a given constraint function hn, (3) is optimized subject to

hn(w
⊤
n x, rn) = θn − ϵ(w⊤

n x, rn) ≤ 0, (4)

where ϵ(w⊤
n x, rn) measures the distance between estimated source

and its corresponding reference, and θn is a constraint parameter that
controls the tolerance of w⊤

n x to deviate from rn. To measure dis-
tance we use Pearson correlation ϵ(w⊤

n x, rn) = corr
(
(w⊤

n x)⊤, rn
)

.

With the definition of Pearson correlation, ϵ(w⊤
n x, rn) and θn are

restricted between 0 and 1. A higher value of θn imposes a stronger
constraint to the estimated source, which increases the similarity be-
tween the estimated sources and the references, and thus decreases
the variability across subjects. On the other hand, a lower value of
θn allows subject variability to be preserved but may not fully take
advantage of the prior information.

To incorporate the inequality constraint (4) into the cost function
(3), we use the augmented Lagrangian approach. We define a slack
variable z as hn(w

⊤
n x, rn) + z2 = 0, and replace the inequality

constraint with an equality. With an optimization process as in [29],
the cost function of c-EBM is written as

J c
n(wn, µn) = Jn(wn)

− 1

2γn

[
max{0, [γnhn(w

⊤
n x, rn) + µn]}2 − µ2

n

]
,

(5)

where µn is a Lagrangian multiplier and γn ∈ R+
∗ is a learning

parameter. Gradient descent approach is used for minwn J c
n(wn),

where updates are written as

△wn ∝
∂J c

n(wn)

∂wn

= −O′
m(n){E[Gm(n)(yn)]}E[gm(n)(yn)x]

− dn

d⊤
nwn

− h′
n(w

⊤
n x, rn)µnr

⊤
n ,

(6)

where in △wn = wi+1
n − wi

n, i denotes the iteration index, and
O(·)′, gm(n) and h′

n are the first order derivatives of O(·), Gm(n)(·)
and hn(·) with respect to wn, respectively. In each iteration, the
Lagrange multiplier µn is updated by

µn ← max{0, [γnhn(w
⊤
n x, rn) + µn]}. (7)

4. SUBGROUP IDENTIFICATION

A homogeneous subgroup can be defined as a group of subjects that
have higher correlation among themselves across multiple functional
networks than the rest of the subjects. With the constraint included,
c-EBM is able to align the components across subject datasets with
respect to the corresponding reference rn, in our case, the activa-
tion map of a functional network. For a given set of observation
X ∈ RN×V , the estimates are Y = WX. To evaluate the sim-
ilarity of a given functional network among K subjects, we define
source component vector (SCV) as sn = [s

[1]
n , . . . , s

[K]
n ]⊤, i.e., by

concatenating the nth source s
[k]
n , 1 ≤ k ≤ K, from each of the

K subject dataset. The nth SCV summarizes the spatial activation
map corresponding to the nth source, for example visual network,
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for all K subjects. The sample covariance matrix of the nth SCV,
Ĉn = (1/(V − 1))YnY

⊤
n , provides the correlation information

among K subjects for a given functional network.
To identify homogeneous subgroups, a two-step subgroup iden-

tification approach described in [25] is implemented: step I, clus-
tering, is applied to the estimated covariance matrix of SCVs, Ĉn,
by k-means clustering. The goal is to group the SCVs into sets of
brain networks that have similar activation patterns across all sub-
jects; step II, modularization, maximizes the modularity of the mean
covariance matrix of each cluster to reveal the subgroup structure
as shown in Fig. 3(a). The subgroup identification results reflect
the intragroup similarity within a subgroup and intergroup differ-
ence across subgroups in terms of the spatial activation patterns of
subjects’ functional networks.

5. EXPERIMENTAL RESULTS

In this section, the performance of the proposed method c-EBM is
examined first using synthetic data, then with multi-subject resting
state fMRI data for identification of subgroups.

5.1. Simulation results using synthetic data
The synthetic data are generated for K = 5 datasets (subjects), in
which N = 10 sources with V = 104 samples are generated from
multivariate generalized Gaussian distribution (MGGD) [36], which
is super-Gaussian when the shape parameter β < 1, sub-Gaussian
for β > 1, and Gaussian when β = 1. The shape parameter β is
randomly generated from a uniform distribution β ∼ U(0.2, 0.8)
for 6 super-Gaussian sources and β ∼ U(2, 10) for 4 sub-Gaussian
sources. The correlation among sources within an SCV is uniformly
distributed in the range [0.8, 0.95].

The correlation between the references and the real sources is
ρtrue, which is changed from 0.1 to 0.9 with 0.1 as step-size aiming
to test the performance of c-EBM with references that have differ-
ent quality levels. Reference signals are generated in such a way that
they reflect ρtrue correlation with the average component of the simu-
lated SCV. Three algorithms—c-EBM, EBM, and MOO-ICAR—are
tested for each scenario. Since MOO-ICAR is designed to be initial-
ized from references, we take into account 5 runs with random ini-
tializations only for EBM and c-EBM. The entire process is repeated
200 times. Fig. 1 shows a diagram of the simulation design.
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Fig. 1: Diagram summarizing the synthetic data generation
To evaluate the effectiveness of the aforementioned algorithms,

we use the correlation between estimated and the real sources, as
well as joint inter-symbol-interference (joint-ISI) [37], which is de-
fined as

ISIJNT(G
[1], . . . ,G[K]) ≜ ISI(

1

K

K∑
k=1

|G[k]|), (8)

where

ISI(G) =
1

2N(N − 1)

(
N∑

n=1

(∑N
m=1||gnm||

maxp|||gnp|
− 1

)

+

(
N∑

m=1

(∑N
n=1||gnm||

maxp|||gmp|
− 1

))
,

(9)

with G[k] = W[k]A[k] elements gnm [38, 39], where A[k] is the
true mixing matrix and W[k] is the estimated demixing matrix. The
range of ISI is 0 ≤ ISI ≤ 1, and when the demixing matrix W[k] is
perfectly estimated, G[k] is an identity matrix subject to permutation
and scaling ambiguities, i.e., ISI is 0.

0.1 0.5 1

true

0.94

0.97

1

C
or

re
la

tio
in

MOO-ICAR =0.2
MOO-ICAR =0.4
MOO-ICAR =0.6
MOO-ICAR =0.9
c-EBM =0.2
c-EBM =0.4
c-EBM =0.6
c-EBM =0.9

0.1 0.5 1

true

0

0.07

0.14

Jo
in

t I
SI

MOO-ICAR =0.2
MOO-ICAR =0.4
MOO-ICAR =0.6
MOO-ICAR =0.9
c-EBM =0.2
c-EBM =0.4
c-EBM =0.6
c-EBM =0.9

Fig. 2: Top: correlation between the estimated sources and the true
sources. Bottom: joint-ISI v.s. ρtrue for c-EBM and MOO-ICAR.
Both c-EBM and MOO-ICAR separate sources accurately when the
quality of reference signals is high, i.e., ρtrue is large. When ρtrue is
low, c-EBM outperforms MOO-ICAR. The constraint tuning param-
eter for c-EBM and MOO-ICAR are θ and α separately.

We can observe from Fig. 2 that c-EBM performs best in terms
of correlation and joint ISI when θ is close to ρtrue. Both c-EBM and
MOO-ICAR separate sources accurately when the quality of refer-
ence signals is high, i.e., ρtrue is large. When there are not enough
reliable references, c-EBM performs better than MOO-ICAR. The
performance of c-EBM can be easily controlled by changing the con-
straint parameter θ based on the available prior information. How-
ever, the performance of MOO-ICAR is not truely affected by the
change in constraint parameter α. We observe that the MOO-ICAR
results with different tuning parameters overlap and are on top each
other. As MOO-ICAR lacks flexibility, its performance is highly
dependent on the reference, which might be problematic if the re-
lationship between references and real sources is unclear. Since the
components from EBM are not aligned across subjects, EBM has
high joint-ISI and low correlation value that is located outside the
plot range of Fig. 2 and those values are not affected by ρtrue. The av-
erage of joint-ISI and correlation over different realizations of EBM
are reported as 0.16±3.5×10−6 and 0.1±3.8×10−6 respectively.

Authorized licensed use limited to: INRIA. Downloaded on February 16,2024 at 08:24:06 UTC from IEEE Xplore.  Restrictions apply. 



(a)

CI = 99.88%CI = 99.75% CI = 98.02%

CI = 99.98% CI = 99.65%

Example Cluster I

SG1 vs SG2 SG1 vs SG3SG2 vs SG3 (b)

CI = 99.58% CI = 99.62%

CI = 99.86% CI = 99.85%

Example Cluster II

(c)

…

Modularization 
Example Cluster IIExample Cluster I

…

Clustering

𝐶"!

𝐶""

Fig. 3: The subgroup identification process for identifying subgroups of patients. a) Three subgroups are marked by yellow, magenta, and
green squares. b) and c) report the resting-state networks (RSNs) showing significant group differences across subgroups from example
cluster I and example cluster II, respectively. The confidence intervals (CI) after FDR correction are included in yellow boxes at the bottom
of each plot. RSNs that are identified by c-EBM are showing significant group differences in visual, primary sensory and motor areas. These
RSNs match with the RSNs reported in [25].

5.2. Experimental results on resting state fMRI data
In this part, the proposed method c-EBM is applied to 88 pa-
tients with schizophrenia (SZ) using resting-state fMRI data ob-
tained from the Center of Biomedical Research Excellence (CO-
BRE) [40–42]. The data from each subject consists of 144 vol-
umes and 53 × 63 × 46 voxels. The dataset is available at
https://coins.trendscenter.org/. We use 53 spatial
maps as references collected from NeuroMark pipeline [14].

With 53 as the number of components, which corresponds to
the number of references, c-EBM is applied to each subject indi-
vidually. Once the estimated sources have been retrieved using c-
EBM, the value at each voxel of the estimated sources is Z-scored
so that the covariance and correlation coincide. By stacking the cor-
responding components from each subject, we form SCVs and its
sample covariance matrix Ĉn. Based on the subgroup identifica-
tion process introduced in Section 3, followup the modularization
stage, three subgroups (SG) were found from each cluster. A two-
sample t-test is used to analyze the activation value at each voxel
of the spatial map across the subjects within each subgroup to deter-
mine whether the spatial activation patterns of resting-state networks
(RSNs) show significant group differences across subgroups. False
discovery rate (FDR) correction [43] is included in all comparisons.
In Fig. 3(b) and (c) the regions that show significant differences
(p-value ≤ 0.05) between subgroups are highlighted in the t-maps.
Also the confidence intervals (CI) after FDR correction are reported.
Significant group differences in visual, primary sensory, and motor
areas are observed in RSNs identified by c-EBM. These RSNs match
with the RSNs reported in [25]. Given the fact that [25] identifies
subgroups based on COBRE dataset as well, the overlapping RSNs
verifies the ability of c-EBM on identifying subgroups. For MOO-
ICAR and c-EBM, the average normalized mutual information [34]
between sources across 88 subjects is 0.0155 ± 1.43 × 10−4 and

0.0066 ± 2.61 × 10−4, respectively. When compared with IVA, c-
EBM has a much lower computational complexity. The wall time
of implementing IVA is 74 hours and 24 minutes with 50 individu-
als [44], whereas c-EBM is 5 hours and 4 minutes with 88 subjects.
The reported wall time came from running both algorithms on the
UMBC High Performance Computing Facility (HPCF).

6. DISCUSSION

Identifying subgroups from large-scale multi-subject fMRI data is
a challenging problem and has very recently started to receive at-
tention. In this work, a constrained ICA algorithm based on en-
tropy bound minimization, c-EBM, is proposed to jointly identify
subgroups from multi-subject fMRI data. Compared with the most
recent subgroup identification approaches based on IVA [25, 44], c-
EBM achieves similar performance but with significantly reduced
computational time and memory utilization. The simulation findings
show that c-EBM performed well in terms of correlation and joint-
ISI to separate sources. The flexibility of controlling constraint tun-
ing parameter makes c-EBM robust against the quality of references.
Compared with other c-ICA algorithms, i,e, MOO-ICAR [30], c-
EBM is able to separate sources accurately when the quality of ref-
erences is not satisfactory.

The references for c-EBM used in the current study came from
the NeuroMark pipeline [14]. Future research can look more closely
at how use of different references affect c-EBM results in terms of
subgroup identification. The impact of using different ICA algo-
rithms to generate references on the performance of c-EBM also
needs to be investigated. Last but not least, while the current c-
EBM requires input in the form of a specified constraint parameter,
a variant of the method that can adaptively choose a constraint value
might be desirable.
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