
Optimal Sensor Placement for Source Extraction

Presented by:
Fateme Ghayem

Supervisors:
Prof. Christian Jutten, Dr. Bertrand Rivet, Dr. Rodrigo Cabral-Farias

Grenoble | images | parole | signal | automatique | laboratoire



Motivation

• Industry

• Medicine

• Wireless communications

• Aerospace engineering

• Biomedical engineering

• Civil engineering

• Environmental study

• Robotics 

• …

Sensors are being used in a variety of domains:
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• Economical interest

• Energy: reducing the required energy for the power supply

• Weight

• Reducing computational complexity

• Ergonomic design and arrangement e.g. motion capture

…

Motivation

Optimal sensor placement is important to collect the best data!

q Limiting the number of sensors
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Optimal sensor placement for source extraction

2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .

Source:
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the

Noise:

• Acoustic signals e.g. PCG

• Taking into account the propagation delay

• Filtering between sensors and sources
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Spatial gain:
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

y(x, t) = a(x, t) ⇤ s(t) + n(x, t), (1.2)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
n(xi, t0), n(xj , t0)

�
=

Ex

⇢
[n(xi, t0)�mn(xi, t0)] . [n(xj , t0)�mn(xj , t0)]

�

q
Ex

�
n(xi, t0)2

 
�mn(xi, t0)2.

q
Ex

�
n(xj , t0)2

 
�mn(xj , t0)2

6= 0,

where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)

�
=

Et

⇢
[n(x, ti)�mn(x, ti)] . [n(x, tj)�mn(x, tj)]

�

q
Et

�
n(x, ti)2

 
�mn(x, ti)2 .

q
Et

�
n(x, tj)2

 
�mn(x, tj)2

= 0,

where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.2) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.3)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.

Linear convolutive mixture model:
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
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Then, the noisy measurement is related to the source signal s(t) as follows :
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Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .

Source:

2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the

Noise:

• Electrical signals e.g. ECG, EEG, MEG

• Quasi-static approximation of Maxwell law 

• Neglect the propagation times (fast propagation)
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
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�
=
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where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)
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=
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where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

y(x, t) = a(x, t) ⇤ s(t) + n(x, t), (1.2)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :
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where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :
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where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.2) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.3)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :
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where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :
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where mn(x, ti) = Et

�
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is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to



Optimal sensor placement for source extraction

2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
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to design a vector f 2 RK to estimate the source by
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Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
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�
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where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)
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where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to
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Objectives to be achieved

I. Estimating the source signal        :
source extraction problem

II. Estimating the spatial gain         for all    :
spatial interpolation e.g. kriging

1.1. A preface to optimal sensor placement for signal extraction 5
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
�

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
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where K+N means {XN
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XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :
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where mn(xi, t0) = Ex
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is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :
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where mn(x, ti) = Et
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is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]T

i2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface

Sensor

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

the color-map shown in Fig. 1.1. By installing M sensors at different positions on the maternal
skin surface, we have a set of noisy measurements according to (1.2).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)
is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
�

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .

Spatial gain:

Sensor
location

Time

4 Chapitre 1. Introduction

y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :
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is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]T

i2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

the color-map shown in Fig. 1.1. By installing M sensors at different positions on the maternal
skin surface, we have a set of noisy measurements according to (1.2).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)
is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
�

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
n(xi, t0), n(xj , t0)

�
=

Ex

⇢
[n(xi, t0)�mn(xi)] . [n(xj , t0)�mn(xj)]

�

q
Ex

�
n(xi, t0)2

 
�mn(xi)2 .

q
Ex

�
n(xj , t0)2

 
�mn(xj)2

6= 0,

where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)

�
=

Et

⇢
[n(x, ti)�mn(ti)] . [n(x, tj)�mn(tj)]

�

q
Et

�
n(x, ti)2

 
�mn(ti)2 .

q
Et

�
n(x, tj)2

 
�mn(tj)2

= 0,

where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]T

i2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface

Sensor

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

the color-map shown in Fig. 1.1. By installing M sensors at different positions on the maternal
skin surface, we have a set of noisy measurements according to (1.2).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)
is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :
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is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :
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where mn(x, ti) = Et
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is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to

Sensor prediction 
criterion

kriging Source 
extraction

4 Chapitre 1. Introduction
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �

2
S = E[s(t)2]

and R
n
K = E[nK(t)nT

K(t)], then the SNR (3) resumes to
SNR(f) = �

2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �
2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function k

n(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where m
a(x) is the mean function and k

a(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and k

a(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
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Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1
R

a
M ), (9)

where R
a
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM
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However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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This section details the proposed method to choose the best
sensor locations for source extraction.
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{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
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where âM is an estimation of aM . Using uncertainty model (7),
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K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N
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for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �

2
S = E[s(t)2]

and R
n
K = E[nK(t)nT

K(t)], then the SNR (3) resumes to
SNR(f) = �

2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �
2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function k

n(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where m
a(x) is the mean function and k

a(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and k

a(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1
R

a
M ), (9)

where R
a
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
R

n
K+N are independent of the new sensor locations XN .

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
n(xi, t0), n(xj , t0)

�
=

Ex

⇢
[n(xi, t0)�mn(xi, t0)] . [n(xj , t0)�mn(xj , t0)]

�

q
Ex

�
n(xi, t0)2

 
�mn(xi, t0)2.

q
Ex

�
n(xj , t0)2

 
�mn(xj , t0)2

6= 0,

where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)

�
=

Et

⇢
[n(x, ti)�mn(x, ti)] . [n(x, tj)�mn(x, tj)]

�

q
Et

�
n(x, ti)2

 
�mn(x, ti)2 .

q
Et

�
n(x, tj)2

 
�mn(x, tj)2

= 0,

where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector
y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to
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noise n(x, t) as
y(x, t) = a(x)s(t) + n(x, t), (3.1)

where a(x) is the spatial gain between the signal of interest s(t) and a sensor at location
x. The vector x 2 RD represents the coordinates of the sensor in the D-dimensional space.
Typically, D 2 {1, 2, 3}, i.e. the sensor could be placed on a curve, on a surface or in 3D space,
respectively.

Considering that M sensors have been placed at locations XM = [x1, x2, . . . , xM ]T , we
have the corresponding measurement set y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T at time
t being obtained as follows :

y(XM, t) = a(XM)s(t) + n(XM, t), (3.2)

where a(XM) = [a(x1), a(x2), . . . , a(xM )]T is the set of spatial gains, and n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T is the noise correlated with the set of sensor positions
XM. Now, the aim of a linear source extraction is to design an extractor vector f(XM) =
[f1(XM), f2(XM), . . . , fM (XM)]T 2 RM to estimate the source s(t) as follows :

ŝ(t) = f(XM)Ty(XM, t), (3.3)

which by replacing (3.2), we have :

ŝ(t) = f(XM)Ta(XM)s(t) + f(XM)Tn(XM, t). (3.4)

It is seen that the estimation of the source using linear extractor consists of two terms :
the first term f(XM)Ta(XM)s(t) is the part related to the source signal, and the second
term f(XM)Tn(XM, t) is the remaining noise part. Classically, a criterion to choose the best
extractor vector f(XM) is the output signal-to-noise ratio (SNR) which is obtained by dividing
the two mentioned parts as follows :

SNR(f(XM)) =
Et

h�
f(XM)Ta(XM)s(t)

�2i

Et

h�
f(XM)Tn(XM, t)

�2i . (3.5)

Assuming that the signal time samples s(t) are temporally zero-mean, independent and iden-
tically distributed (iid) and denoting by �2

s = Et[s(t)2] the variance of the source, and
by Cn(XM,XM) = Et[n(XM, t)n(XM, t)T ] the covariance matrix of the noise, then the
SNR (3.5) becomes

SNR(f(XM)) = �2
s

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
. (3.6)

Now, by looking at the SNR as a function of the extractor vector, we maximize it over f(XM)
as follows to express the best extraction vector f⇤(XM) 1 :

f⇤(XM) = argmax
f(XM)

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
. (3.7)

1. Note that here the scaling factor �2
s is not tackled since in source extraction, the main goal is to enhance

the signal of interest. Additional prior information on the signal amplitude can then be used to properly scale
the extracted source.
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It is seen that the estimation of the source using linear extractor consists of two terms :
the first term f(XM)Ta(XM)s(t) is the part related to the source signal, and the second
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tically distributed (iid) and denoting by �2

s = Et[s(t)2] the variance of the source, and
by Cn(XM,XM) = Et[n(XM, t)n(XM, t)T ] the covariance matrix of the noise, then the
SNR (3.5) becomes
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. (3.6)

Now, by looking at the SNR as a function of the extractor vector, we maximize it over f(XM)
as follows to express the best extraction vector f⇤(XM) 1 :

f⇤(XM) = argmax
f(XM)

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
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1. Note that here the scaling factor �2
s is not tackled since in source extraction, the main goal is to enhance

the signal of interest. Additional prior information on the signal amplitude can then be used to properly scale
the extracted source.
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• Estimation of the extraction vector : maximizing the output SNR

2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that
the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
Once the sensor locations X̂M are obtained, one can ex-

tract the source of interest (2) using the separation vector

f̂M = (Rn
M )�1ma

M . (12)

9 / 43
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This section details the proposed method to choose the best
sensor locations for source extraction.

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
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{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
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SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2
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and the achieved output SNR is given by
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2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that
the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
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tion, such as the output of independent component analysis
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However, directly maximizing (9) can lead to a high com-
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problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
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Ĵ(XN |XK) = E[âTK+N (Rn
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
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is the spatial mean of the noise at position xi. Also, time
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is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, consider the set of positions
XM 2 RM⇥D as a subset of XX , to be selected positions for sensor placement where M ⇢
X is the set of indexes corresponding to the selected positions with the size |M| = M .
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to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =
[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources, e.g.
the maternal ECG signal, are considered as the environmental additive noise signals. Now, let’s
assume that the attenuated fetal ECG is expanded on the maternal skin surface according to

28
Chapitre 3. Average signal to noise ratio as a criterion for optimal sensor

placement

noise n(x, t) as
y(x, t) = a(x)s(t) + n(x, t), (3.1)

where a(x) is the spatial gain between the signal of interest s(t) and a sensor at location
x. The vector x 2 RD represents the coordinates of the sensor in the D-dimensional space.
Typically, D 2 {1, 2, 3}, i.e. the sensor could be placed on a curve, on a surface or in 3D space,
respectively.

Considering that M sensors have been placed at locations XM = [x1, x2, . . . , xM ]T , we
have the corresponding measurement set y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T at time
t being obtained as follows :

y(XM, t) = a(XM)s(t) + n(XM, t), (3.2)

where a(XM) = [a(x1), a(x2), . . . , a(xM )]T is the set of spatial gains, and n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T is the noise correlated with the set of sensor positions
XM. Now, the aim of a linear source extraction is to design an extractor vector f(XM) =
[f1(XM), f2(XM), . . . , fM (XM)]T 2 RM to estimate the source s(t) as follows :

ŝ(t) = f(XM)Ty(XM, t), (3.3)

which by replacing (3.2), we have :

ŝ(t) = f(XM)Ta(XM)s(t) + f(XM)Tn(XM, t). (3.4)

It is seen that the estimation of the source using linear extractor consists of two terms :
the first term f(XM)Ta(XM)s(t) is the part related to the source signal, and the second
term f(XM)Tn(XM, t) is the remaining noise part. Classically, a criterion to choose the best
extractor vector f(XM) is the output signal-to-noise ratio (SNR) which is obtained by dividing
the two mentioned parts as follows :

SNR(f(XM)) =
Et

h�
f(XM)Ta(XM)s(t)

�2i

Et

h�
f(XM)Tn(XM, t)

�2i . (3.5)

Assuming that the signal time samples s(t) are temporally zero-mean, independent and iden-
tically distributed (iid) and denoting by �2

s = Et[s(t)2] the variance of the source, and
by Cn(XM,XM) = Et[n(XM, t)n(XM, t)T ] the covariance matrix of the noise, then the
SNR (3.5) becomes

SNR(f(XM)) = �2
s

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
. (3.6)

Now, by looking at the SNR as a function of the extractor vector, we maximize it over f(XM)
as follows to express the best extraction vector f⇤(XM) 1 :

f⇤(XM) = argmax
f(XM)

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
. (3.7)

1. Note that here the scaling factor �2
s is not tackled since in source extraction, the main goal is to enhance

the signal of interest. Additional prior information on the signal amplitude can then be used to properly scale
the extracted source.
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• Maximizing the SNR:
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SNR as a criterion for optimal sensor placement
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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• Where to put the sensors?

• Gaussian Process assumption:

Known
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Prior Uncertainty



Why Gaussian Process?

• Representing many shapes

• Easy to compute various quantities e.g. marginal/conditional distributions 

• Hyperparameters: representing signal properties e.g. magnitude and smoothness
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Figure 4.2: The effect of the parameter ⇢a on the smoothness of the spatial gain. By increasing
⇢a, the spatial gain becomes smoother.

4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP

�
m(x), C(x,x0)

�
, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio
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spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP

�
m(x), C(x,x0)

�
, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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Remark 1
If we have a prior information on a(XK) = [a(x1), a(x2), . . . , a(xK)]T , for example if we have
previously placed the sensors at these positions and measured the gains, then the prior (4.6) can
be updated to include this information, simply by conditioning the GP on the measurements of
the gains. As explained in Chapter 2.1, the conditioned GP is still a GP but with conditioned
mean and covariance functions presented in (2.16) and (2.18), respectively [RW06].

4.2 Proposed criterion

Since the pdf of a random variable contains all the information about it, here, by computing
the pdf of the SNR, we are able to define different efficient statistical criteria. Therefore, first,
we attempt to derive the pdf of the SNR given in (4.7). Then, based on the obtained pdf, we
present a robust criterion for sensor placement.

To simplify notation, we define the random variable

w(XM) , 1

�2
s

SNR(f ⇤(XM)|XM) = a(XM)TCn(XM,XM)�1a(XM). (4.9)

Now, in order to find the distribution of w(XM), we propose the following :

Proposition 1 (Distribution of w(XM))
If the spatial gain a(x) follows the GP model a(x) ⇠ GP

⇣
ma(x), Ca(x, x0)

⌘
, then w(XM) is

the weighted sum of M independent random variables as follows :

w(XM) =
MX

i=1

diy2i , (4.10)

where yi’s are independent normally distributed random variables yi ⇠ N
�
myi , 1

�
, with the

mean
myi = uT

i Ca(XM,XM)�
1
2ma(XM) (4.11)

and, di’s and ui’s are, respectively, the eigenvalues and eigenvectors of the matrix A defined
as follows :

A , Ca(XM,XM)
1
2R(XM,XM)Ca(XM,XM)

1
2 , (4.12)

and ma(XM) = [ma(x1), ma(x2), . . . , ma(xM)].T .

To prove the above proposition, we first need to present the following lemma.

Lemma 1
Let q be a normally distributed random vector with zero mean and an identity covariance
matrix IM : q ⇠ N (0, IM ). Now, we define the random variable yi as follows :

yi , uT

i (q +m0(XM)), (4.13)
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By replacing (4.14) and (4.12) in (4.18), we obtain

MX

i=1

diy2i =
h
ma(XM) +Ca(XM,XM)

1
2q

i
T

R(XM,XM)
h
ma(XM) +Ca(XM,XM)

1
2q

i
.

Since q is a normally distributed random vector with zero mean and an identity covariance
matrix, and also because ma(XM) and Ca(XM,XM) are the mean vector and covariance ma-
trix of the model of the spatial gain, respectively, we conclude that ma(XM)+Ca(XM,XM)

1
2q

follows the same distribution as a(XM). Therefore, we have

MX

i=1

diy2i = a(XM)TR(XM,XM)a(XM)T =
1

�2
s

SNR(f⇤(XM)|XM) = w(XM). ⌅

Lemma 2
Since yi is a normally distributed scalar with non-zero mean myi and variance one, its squared
form y2

i
follows a non-central chi-squared distribution with the number of degrees of freedom

ki = 1, and non-centrality parameter �i = m2
yi [AS72]. So, the pdf of the random variable

vi , y2
i

becomes

gvi(vi; ki,�i) =
1

2
exp�

(vi+�i)
2

✓
vi
�i

◆(
ki
4 � 1

2 )

I ki
2 �1

(
p
�ivi), (4.19)

where I·(·) is the modified Bessel function of the first kind. Now, by defining �i = divi to be
the scaled form of the random variable vi with the positive scale factor di, the distribution of
�i becomes as follows :

g�i(�i) =
1

di
gvi(

�i
di
; ki,�i), (4.20)

with gvi(.) being the pdf of the random variable vi = y2
i
with non-central chi-squared distribution

defined in (4.19). ⌅

Proposition 2 (Distribution of w(XM) = SNR(f ⇤(XM)|XM)/�2
s)

From Lemma 1 and Lemma 2, it can be concluded that w(XM) = SNR(f⇤(XM)|XM)/�2
s is

the sum of M independent random variables �i each having a pdf defined in (4.20). Therefore,
due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). ⌅ (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.

• Noncentral	chi-squared	distribution

• Independent	random	variables

Output SNR:

Random SNRRandom
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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By replacing (4.14) and (4.12) in (4.18), we obtain

MX

i=1

diy2i =
h
ma(XM) +Ca(XM,XM)

1
2q

i
T

R(XM,XM)
h
ma(XM) +Ca(XM,XM)

1
2q

i
.

Since q is a normally distributed random vector with zero mean and an identity covariance
matrix, and also because ma(XM) and Ca(XM,XM) are the mean vector and covariance ma-
trix of the model of the spatial gain, respectively, we conclude that ma(XM)+Ca(XM,XM)

1
2q

follows the same distribution as a(XM). Therefore, we have

MX

i=1

diy2i = a(XM)TR(XM,XM)a(XM)T =
1

�2
s

SNR(f⇤(XM)|XM) = w(XM). ⌅

Lemma 2
Since yi is a normally distributed scalar with non-zero mean myi and variance one, its squared
form y2

i
follows a non-central chi-squared distribution with the number of degrees of freedom

ki = 1, and non-centrality parameter �i = m2
yi [AS72]. So, the pdf of the random variable

vi , y2
i

becomes

gvi(vi; ki,�i) =
1

2
exp�

(vi+�i)
2

✓
vi
�i

◆(
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4 � 1

2 )

I ki
2 �1

(
p
�ivi), (4.19)

where I·(·) is the modified Bessel function of the first kind. Now, by defining �i = divi to be
the scaled form of the random variable vi with the positive scale factor di, the distribution of
�i becomes as follows :

g�i(�i) =
1

di
gvi(

�i
di
; ki,�i), (4.20)

with gvi(.) being the pdf of the random variable vi = y2
i
with non-central chi-squared distribution

defined in (4.19). ⌅

Proposition 2 (Distribution of w(XM) = SNR(f ⇤(XM)|XM)/�2
s)

From Lemma 1 and Lemma 2, it can be concluded that w(XM) = SNR(f⇤(XM)|XM)/�2
s is

the sum of M independent random variables �i each having a pdf defined in (4.20). Therefore,
due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). ⌅ (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
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Remark 1
If we have a prior information on a(XK) = [a(x1), a(x2), . . . , a(xK)]T , for example if we have
previously placed the sensors at these positions and measured the gains, then the prior (4.6) can
be updated to include this information, simply by conditioning the GP on the measurements of
the gains. As explained in Chapter 2.1, the conditioned GP is still a GP but with conditioned
mean and covariance functions presented in (2.16) and (2.18), respectively [RW06].

4.2 Proposed criterion

Since the pdf of a random variable contains all the information about it, here, by computing
the pdf of the SNR, we are able to define different efficient statistical criteria. Therefore, first,
we attempt to derive the pdf of the SNR given in (4.7). Then, based on the obtained pdf, we
present a robust criterion for sensor placement.

To simplify notation, we define the random variable

w(XM) , 1

�2
s

SNR(f ⇤(XM)|XM) = a(XM)TCn(XM,XM)�1a(XM). (4.9)

Now, in order to find the distribution of w(XM), we propose the following :

Proposition 1 (Distribution of w(XM))
If the spatial gain a(x) follows the GP model a(x) ⇠ GP

⇣
ma(x), Ca(x, x0)

⌘
, then w(XM) is

the weighted sum of M independent random variables as follows :

w(XM) =
MX

i=1

diy2i , (4.10)

where yi’s are independent normally distributed random variables yi ⇠ N
�
myi , 1

�
, with the

mean
myi = uT

i Ca(XM,XM)�
1
2ma(XM) (4.11)

and, di’s and ui’s are, respectively, the eigenvalues and eigenvectors of the matrix A defined
as follows :

A , Ca(XM,XM)
1
2R(XM,XM)Ca(XM,XM)

1
2 , (4.12)

and ma(XM) = [ma(x1), ma(x2), . . . , ma(xM)].T .

To prove the above proposition, we first need to present the following lemma.

Lemma 1
Let q be a normally distributed random vector with zero mean and an identity covariance
matrix IM : q ⇠ N (0, IM ). Now, we define the random variable yi as follows :

yi , uT

i (q +m0(XM)), (4.13)
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
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Taking the derivative of the above cost function and setting it equal to zero leads to the
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3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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4.1. Robust sensor placement for signal extraction 47

due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low

cdf of
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)

Output SNR:

Target function:
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

at     : small variance

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low

at      : large variance

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(b) Large variance

Case 2 : decreasing ✓ (keeping ✓ < ✓median)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

46 Chapitre 4. Robust sensor placement for signal extraction

by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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Case 1 : increasing ✓ (keeping ✓ < ✓median)
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).

50
C

ha
pi

tr
e

4.
R

ob
us

t
se

ns
or

pl
ac

em
en

t
fo

r
si

gn
al

ex
tr

ac
ti

on

Si
nc

e
d i

’s
an

d
u i

’s
ar

e
th

e
ei

ge
nv

al
ue

s
an

d
ei

ge
nv

ec
to

rs
of

A
,

it
yi

el
ds

P
M i
=
1
(d

i
u i

uT i
)
=

A
.

So
,
w
e

ha
ve

M X i
=
1

d i
y2 i

=
qT

A
q
+
2m

0 (
X

M
)T

A
q
+

m
0 (
X

M
)T

A
(m

0 (
X

M
))
.

(4
.1

7)

B
y

re
pl

ac
in

g
(4

.1
3)

an
d

(4
.1

1)
in

(4
.1

7)
,
w
e

ob
ta

in

M X i
=
1

d i
y2 i

=
h m

a
(X

M
)
+

C
a
(X

M
,X

M
)1 2

qi T
R
(X

M
,X

M
)h m

a
(X

M
)
+

C
a
(X

M
,X

M
)1 2

qi .

Si
nc

e
q

is
a

no
rm

al
ly

di
st

ri
bu

te
d

ra
nd

om
ve

ct
or

w
ith

ze
ro

m
ea

n
an

d
an

id
en

tit
y

co
va

ri
an

ce
m

at
ri

x,
an

d
al

so
m

a
(X

M
)

an
d

C
a
(X

M
,X

M
)

ar
e

th
e

m
ea

n
ve

ct
or

an
d

co
va

ri
an

ce
m

at
ri

x
of

th
e

m
od

el
of

th
e

sp
at

ia
lg

ai
n

re
sp

ec
tiv

el
y,

w
e

co
nc

lu
de

th
at

m
a
(X

M
)+

C
a
(X

M
,X

M
)1 2

q
fo

llo
w
s

th
e

sa
m

e
di

st
ri

bu
tio

n
as

a(
X

M
).

So
,
w
e

ha
ve

M X i
=
1

d i
y2 i

=
a(

X
M
)T

R
(X

M
,X

M
)a
(X

M
)T

=
1 �
2 s
SN

R
(f
⇤ (

X
M
)|X

M
)
=

w
(X

M
).

⌅

L
em

m
a

2
Si

nc
e

y i
is

a
no

rm
al

ly
di

st
ri

bu
te

d
sc

al
ar

w
ith

no
n-

ze
ro

m
ea

n
m

y i
an

d
va

ri
an

ce
on

e,
its

sq
ua

re
d

fo
rm

y2 i
fo

llo
w
s

a
no

nc
en

tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
tio

n
w
ith

th
e

nu
m

be
r

of
de

gr
ee

s
of

fr
ee

do
m

k i
=

1,
an

d
no

n-
ce

nt
ra

lit
y

pa
ra

m
et

er
�
i
=

m
2 y i
.

So
,

th
e

pd
f

of
th

e
ra

nd
om

va
ri

ab
le

v i
,

y2 i

be
co

m
es

g v
i
(v

i
;k

i
,�

i
)
=

1 2
ex
p
�

(v
i
+
�
i
)

2

✓
v i �
i

◆
(
k
i 4
�

1 2
)

I
k
i 2
�
1
(p

�
i
v i
),

(4
.1

8)

w
he

re
I ·
(·)

is
th

e
m

od
ifi

ed
B
es

se
lf

un
ct

io
n

of
th

e
fir

st
ki

nd
.
N

ow
,
by

de
fin

in
g
�
i
=

d i
v i

to
be

th
e

sc
al

ed
fo

rm
of

th
e

ra
nd

om
va

ri
ab

le
v i

w
ith

th
e

po
si

tiv
e

sc
al

e
fa

ct
or

d i
,
th

e
di

st
ri

bu
tio

n
of

�
i
be

co
m

es
as

fo
llo

w
s

:

g �
i
(�

i
)
=

1 d i
g v

i
(�

i d i
;k

i
,�

i
),

(4
.1

9)

de
no

tin
g
g v

i
(.
)

th
e

pd
f
of

th
e

ra
nd

om
va

ri
ab

le
v i

=
y2 i

w
ith

no
nc

en
tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
tio

n
de

fin
ed

in
(4

.4
3)

.

P
ro

p
os

it
io

n
2

(D
is

tr
ib

ut
io

n
of

w
(X

M
)
=

SN
R
(f

⇤ (
X

M
)|X

M
)/
�
2 s
)

Fr
om

Le
m

m
a

1
an

d
Le

m
m

a
2,

it
ca

n
be

co
nc

lu
de

d
th

at
w
(X

M
)
=

SN
R
(f
⇤ (

X
M
)|X

M
)/
�
2 s

is
th

e
su

m
of

M
in

de
pe

nd
en

tr
an

do
m

va
ri

ab
le
s
�
i
ea

ch
ha

vi
ng

a
pd

fd
efi

ne
d

in
(4

.1
9)

.T
he

re
fo

re
,

du
e

to
in

de
pe

nd
en

ce
,

th
e

pd
f

of
th

e
SN

R
is

gi
ve

n
by

th
e

co
nv

ol
ut

io
n

pr
od

uc
t,

de
no

te
d

by
⇤,

be
tw

ee
n

th
e

pd
f
of

M
ra

nd
om

va
ri

ab
le
s
�
i
:

g w
(w

)
=
g �

1
(w

)
⇤
g �

2
(w

)
⇤
··
·⇤

g �
M
(w

)

=
1

Q
M i
=
1
d i
g v

1
(
w d 1
;k

1
,�

1
)
⇤
g v

2
(
w d 2
;k

2
,�

2
)
⇤
··
·⇤

g v
M
(
w d M

;k
M
,�

M
).

(4
.2

0)
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).

50
C

h
ap

it
re

4.
R

ob
u
st

se
n
so

r
p
la

ce
m

en
t

fo
r

si
gn

al
ex

tr
ac

ti
on

Si
nc

e
d
i
’s

an
d

u
i
’s

ar
e

th
e

ei
ge

nv
al

ue
s

an
d

ei
ge

nv
ec

to
rs

of
A

,
it

yi
el
ds

P
M i
=
1
(d

i
u
i
u
T i
)
=

A
.

So
,
w
e

ha
ve

M X i
=
1

d
i
y2 i

=
qT

A
q
+
2
m

0 (
X

M
)T

A
q
+

m
0 (
X

M
)T

A
(m

0 (
X

M
))
.

(4
.1

7)

B
y

re
pl

ac
in

g
(4

.1
3)

an
d

(4
.1

1)
in

(4
.1

7)
,
w
e

ob
ta

in

M X i
=
1

d
i
y2 i

=
h m

a
(X

M
)
+

C
a
(X

M
,X

M
)
1 2
qi T

R
(X

M
,X

M
)h m

a
(X

M
)
+

C
a
(X

M
,X

M
)
1 2
qi .

Si
nc

e
q

is
a

no
rm

al
ly

di
st

ri
bu

te
d

ra
nd

om
ve

ct
or

w
it
h

ze
ro

m
ea

n
an

d
an

id
en

ti
ty

co
va

ri
an

ce
m

at
ri

x,
an

d
al

so
m

a
(X

M
)

an
d

C
a
(X

M
,X

M
)

ar
e

th
e

m
ea

n
ve

ct
or

an
d

co
va

ri
an

ce
m

at
ri

x
of

th
e

m
od

el
of

th
e

sp
at

ia
lg

ai
n

re
sp

ec
ti
ve

ly
,w

e
co

nc
lu

de
th

at
m

a
(X

M
)+

C
a
(X

M
,X

M
)
1 2
q

fo
llo

w
s

th
e

sa
m

e
di

st
ri

bu
ti
on

as
a(

X
M
).

So
,
w
e

ha
ve

M X i
=
1

d
i
y2 i

=
a(

X
M
)T

R
(X

M
,X

M
)a
(X

M
)T

=
1 �
2 s
SN

R
(f
⇤ (

X
M
)|
X

M
)
=

w
(X

M
).

⌅

L
em

m
a

2
Si

nc
e

y i
is

a
no

rm
al

ly
di

st
ri

bu
te

d
sc

al
ar

w
it
h

no
n-

ze
ro

m
ea

n
m

y i
an

d
va

ri
an

ce
on

e,
it
s

sq
ua

re
d

fo
rm

y2 i
fo

llo
w
s

a
no

nc
en

tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
ti
on

w
it
h

th
e

nu
m

be
r

of
de

gr
ee

s
of

fr
ee

do
m

k
i
=

1
,

an
d

no
n-

ce
nt

ra
lit

y
pa

ra
m

et
er

�
i
=

m
2 y i
.

So
,

th
e

pd
f

of
th

e
ra

nd
om

va
ri

ab
le

v i
,

y2 i

be
co

m
es

g v
i
(v

i
;k

i
,�

i
)
=

1 2
ex
p
�

(v
i
+
�
i
)

2

✓
v i �
i

◆
(
k
i 4
�

1 2
)

I
k
i 2
�
1
(p

�
i
v i
),

(4
.1

8)

w
he

re
I ·
(·
)

is
th

e
m

od
ifi

ed
B
es

se
l
fu

nc
ti
on

of
th

e
fir

st
ki

nd
.
N

ow
,
by

de
fin

in
g
�
i
=

d
i
v i

to
be

th
e

sc
al

ed
fo

rm
of

th
e

ra
nd

om
va

ri
ab

le
v i

w
it
h

th
e

po
si

ti
ve

sc
al

e
fa

ct
or

d
i
,
th

e
di

st
ri

bu
ti
on

of
�
i
be

co
m

es
as

fo
llo

w
s

:

g �
i
(�

i
)
=

1 d
i

g v
i
(
�
i

d
i

;k
i
,�

i
),

(4
.1

9)

de
no

ti
ng

g v
i
(.
)

th
e

pd
f
of

th
e

ra
nd

om
va

ri
ab

le
v i

=
y2 i

w
it
h

no
nc

en
tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
ti
on

de
fin

ed
in

(4
.4

3)
.

P
ro

p
os

it
io

n
2

(D
is

tr
ib

ut
io

n
of

w
(X

M
)
=

SN
R
(f

⇤ (
X

M
)|
X

M
)/
�
2 s
)

Fr
om

Le
m

m
a

1
an

d
Le

m
m

a
2,

it
ca

n
be

co
nc

lu
de

d
th

at
w
(X

M
)
=

SN
R
(f
⇤ (

X
M
)|
X

M
)/
�
2 s

is
th

e
su

m
of

M
in

de
pe

nd
en

t
ra

nd
om

va
ri

ab
le
s
�
i
ea

ch
ha

vi
ng

a
pd

f
de

fin
ed

in
(4

.1
9)

.
T
he

re
fo

re
,

du
e

to
in

de
pe

nd
en

ce
,

th
e

pd
f

of
th

e
SN

R
is

gi
ve

n
by

th
e

co
nv

ol
ut

io
n

pr
od

uc
t,

de
no

te
d

by
⇤,

be
tw

ee
n

th
e

pd
f
of

M
ra

nd
om

va
ri

ab
le
s
�
i
:

g w
(w

)
=
g �

1
(w

)
⇤
g �

2
(w

)
⇤
··
·⇤

g �
M
(w

)

=
1

Q
M i
=
1
d
i

g v
1
(
w d
1
;k

1
,�

1
)
⇤
g v

2
(
w d
2
;k

2
,�

2
)
⇤
··
·⇤

g v
M
(
w d
M

;k
M
,�

M
).

(4
.2

0)

4.1. Robust sensor placement for signal extraction 47

due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

Case1: small 𝜽
56 Chapitre 4. Robust sensor placement for signal extraction

Case 1 : increasing ✓ (keeping ✓ < ✓median)
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

at     : small variance

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low

at     : large variance

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).

50
C

ha
pi

tr
e

4.
R

ob
us

t
se

ns
or

pl
ac

em
en

t
fo

r
si

gn
al

ex
tr

ac
ti

on

Si
nc

e
d
i
’s

an
d

u i
’s

ar
e

th
e

ei
ge

nv
al

ue
s

an
d

ei
ge

nv
ec

to
rs

of
A

,
it

yi
el
ds

P
M i
=
1
(d

i
u i

uT i
)
=

A
.

So
,
w
e

ha
ve

M X i
=
1

d
i
y2 i

=
qT

A
q
+
2m

0 (
X

M
)T

A
q
+

m
0 (
X

M
)T

A
(m

0 (
X

M
))
.

(4
.1

7)

B
y

re
pl

ac
in

g
(4

.1
3)

an
d

(4
.1

1)
in

(4
.1

7)
,
w
e

ob
ta

in

M X i
=
1

d
i
y2 i

=
h m

a
(X

M
)
+

C
a
(X

M
,X

M
)1 2

qi T
R
(X

M
,X

M
)h m

a
(X

M
)
+

C
a
(X

M
,X

M
)1 2

qi .

Si
nc

e
q

is
a

no
rm

al
ly

di
st

ri
bu

te
d

ra
nd

om
ve

ct
or

w
ith

ze
ro

m
ea

n
an

d
an

id
en

tit
y

co
va

ri
an

ce
m

at
ri

x,
an

d
al

so
m

a
(X

M
)

an
d

C
a
(X

M
,X

M
)

ar
e

th
e

m
ea

n
ve

ct
or

an
d

co
va

ri
an

ce
m

at
ri

x
of

th
e

m
od

el
of

th
e

sp
at

ia
lg

ai
n

re
sp

ec
tiv

el
y,

w
e

co
nc

lu
de

th
at

m
a
(X

M
)+

C
a
(X

M
,X

M
)1 2

q
fo

llo
w
s

th
e

sa
m

e
di

st
ri

bu
tio

n
as

a(
X

M
).

So
,
w
e

ha
ve

M X i
=
1

d
i
y2 i

=
a(

X
M
)T

R
(X

M
,X

M
)a
(X

M
)T

=
1 �
2 s
SN

R
(f
⇤ (

X
M
)|X

M
)
=

w
(X

M
).

⌅

L
em

m
a

2
Si

nc
e

y i
is

a
no

rm
al

ly
di

st
ri

bu
te

d
sc

al
ar

w
ith

no
n-

ze
ro

m
ea

n
m

y i
an

d
va

ri
an

ce
on

e,
its

sq
ua

re
d

fo
rm

y2 i
fo

llo
w
s

a
no

nc
en

tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
tio

n
w
ith

th
e

nu
m

be
r

of
de

gr
ee

s
of

fr
ee

do
m

k
i
=

1,
an

d
no

n-
ce

nt
ra

lit
y

pa
ra

m
et

er
�
i
=

m
2 y i
.

So
,

th
e

pd
f

of
th

e
ra

nd
om

va
ri

ab
le

v i
,

y2 i

be
co

m
es

g v
i
(v

i
;k

i
,�

i
)
=

1 2
ex
p
�

(v
i
+
�
i
)

2

✓
v i �
i

◆
(
k
i 4
�

1 2
)

I
k
i 2
�
1
(p

�
i
v i
),

(4
.1

8)

w
he

re
I ·
(·)

is
th

e
m

od
ifi

ed
B
es

se
l
fu

nc
tio

n
of

th
e

fir
st

ki
nd

.
N

ow
,
by

de
fin

in
g
�
i
=

d
i
v i

to
be

th
e

sc
al

ed
fo

rm
of

th
e

ra
nd

om
va

ri
ab

le
v i

w
ith

th
e

po
si

tiv
e

sc
al

e
fa

ct
or

d
i
,
th

e
di

st
ri

bu
tio

n
of

�
i
be

co
m

es
as

fo
llo

w
s

:

g �
i
(�

i
)
=

1 d
i

g v
i
(�

i

d
i

;k
i
,�

i
),

(4
.1

9)

de
no

tin
g
g v

i
(.
)

th
e

pd
f
of

th
e

ra
nd

om
va

ri
ab

le
v i

=
y2 i

w
ith

no
nc

en
tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
tio

n
de

fin
ed

in
(4

.4
3)

.

P
ro

p
os

it
io

n
2

(D
is

tr
ib

ut
io

n
of

w
(X

M
)
=

SN
R
(f

⇤ (
X

M
)|X

M
)/
�
2 s
)

Fr
om

Le
m

m
a

1
an

d
Le

m
m

a
2,

it
ca

n
be

co
nc

lu
de

d
th

at
w
(X

M
)
=

SN
R
(f
⇤ (

X
M
)|X

M
)/
�
2 s

is
th

e
su

m
of

M
in

de
pe

nd
en

t
ra

nd
om

va
ri

ab
le
s
�
i
ea

ch
ha

vi
ng

a
pd

fd
efi

ne
d

in
(4

.1
9)

.T
he

re
fo

re
,

du
e

to
in

de
pe

nd
en

ce
,

th
e

pd
f

of
th

e
SN

R
is

gi
ve

n
by

th
e

co
nv

ol
ut

io
n

pr
od

uc
t,

de
no

te
d

by
⇤,

be
tw

ee
n

th
e

pd
f
of

M
ra

nd
om

va
ri

ab
le
s
�
i
:

g w
(w

)
=
g �

1
(w

)
⇤
g �

2
(w

)
⇤
··
·⇤

g �
M
(w

)

=
1

Q
M i
=
1
d
i

g v
1
(
w d
1
;k

1
,�

1
)
⇤
g v

2
(
w d
2
;k

2
,�

2
)
⇤
··
·⇤

g v
M
(
w d
M

;k
M
,�

M
).

(4
.2

0)

4.1. Robust sensor placement for signal extraction 47

due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

56 Chapitre 4. Robust sensor placement for signal extraction

Case 1 : increasing ✓ (keeping ✓ < ✓median)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

46 Chapitre 4. Robust sensor placement for signal extraction

by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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Case 1 : increasing ✓ (keeping ✓ < ✓median)
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).

50
C

h
ap

it
re

4.
R

ob
u
st

se
n
so

r
p
la

ce
m

en
t

fo
r

si
gn

al
ex

tr
ac

ti
on

Si
nc

e
d
i
’s

an
d

u
i
’s

ar
e

th
e

ei
ge

nv
al

ue
s

an
d

ei
ge

nv
ec

to
rs

of
A

,
it

yi
el
ds

P
M i
=
1
(d

i
u
i
u
T i
)
=

A
.

So
,
w
e

ha
ve

M X i
=
1

d
i
y2 i

=
qT

A
q
+
2
m

0 (
X

M
)T

A
q
+

m
0 (
X

M
)T

A
(m

0 (
X

M
))
.

(4
.1

7)

B
y

re
pl

ac
in

g
(4

.1
3)

an
d

(4
.1

1)
in

(4
.1

7)
,
w
e

ob
ta

in

M X i
=
1

d
i
y2 i

=
h m

a
(X

M
)
+

C
a
(X

M
,X

M
)
1 2
qi T

R
(X

M
,X

M
)h m

a
(X

M
)
+

C
a
(X

M
,X

M
)
1 2
qi .

Si
nc

e
q

is
a

no
rm

al
ly

di
st

ri
bu

te
d

ra
nd

om
ve

ct
or

w
it
h

ze
ro

m
ea

n
an

d
an

id
en

ti
ty

co
va

ri
an

ce
m

at
ri

x,
an

d
al

so
m

a
(X

M
)

an
d

C
a
(X

M
,X

M
)

ar
e

th
e

m
ea

n
ve

ct
or

an
d

co
va

ri
an

ce
m

at
ri

x
of

th
e

m
od

el
of

th
e

sp
at

ia
lg

ai
n

re
sp

ec
ti
ve

ly
,w

e
co

nc
lu

de
th

at
m

a
(X

M
)+

C
a
(X

M
,X

M
)
1 2
q

fo
llo

w
s

th
e

sa
m

e
di

st
ri

bu
ti
on

as
a(

X
M
).

So
,
w
e

ha
ve

M X i
=
1

d
i
y2 i

=
a(

X
M
)T

R
(X

M
,X

M
)a
(X

M
)T

=
1 �
2 s
SN

R
(f
⇤ (

X
M
)|
X

M
)
=

w
(X

M
).

⌅

L
em

m
a

2
Si

nc
e

y i
is

a
no

rm
al

ly
di

st
ri

bu
te

d
sc

al
ar

w
it
h

no
n-

ze
ro

m
ea

n
m

y i
an

d
va

ri
an

ce
on

e,
it
s

sq
ua

re
d

fo
rm

y2 i
fo

llo
w
s

a
no

nc
en

tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
ti
on

w
it
h

th
e

nu
m

be
r

of
de

gr
ee

s
of

fr
ee

do
m

k
i
=

1
,

an
d

no
n-

ce
nt

ra
lit

y
pa

ra
m

et
er

�
i
=

m
2 y i
.

So
,

th
e

pd
f

of
th

e
ra

nd
om

va
ri

ab
le

v i
,

y2 i

be
co

m
es

g v
i
(v

i
;k

i
,�

i
)
=

1 2
ex
p
�

(v
i
+
�
i
)

2

✓
v i �
i

◆
(
k
i 4
�

1 2
)

I
k
i 2
�
1
(p

�
i
v i
),

(4
.1

8)

w
he

re
I ·
(·
)

is
th

e
m

od
ifi

ed
B
es

se
l
fu

nc
ti
on

of
th

e
fir

st
ki

nd
.
N

ow
,
by

de
fin

in
g
�
i
=

d
i
v i

to
be

th
e

sc
al

ed
fo

rm
of

th
e

ra
nd

om
va

ri
ab

le
v i

w
it
h

th
e

po
si

ti
ve

sc
al

e
fa

ct
or

d
i
,
th

e
di

st
ri

bu
ti
on

of
�
i
be

co
m

es
as

fo
llo

w
s

:

g �
i
(�

i
)
=

1 d
i

g v
i
(
�
i

d
i

;k
i
,�

i
),

(4
.1

9)

de
no

ti
ng

g v
i
(.
)

th
e

pd
f
of

th
e

ra
nd

om
va

ri
ab

le
v i

=
y2 i

w
it
h

no
nc

en
tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
ti
on

de
fin

ed
in

(4
.4

3)
.

P
ro

p
os

it
io

n
2

(D
is

tr
ib

ut
io

n
of

w
(X

M
)
=

SN
R
(f

⇤ (
X

M
)|
X

M
)/
�
2 s
)

Fr
om

Le
m

m
a

1
an

d
Le

m
m

a
2,

it
ca

n
be

co
nc

lu
de

d
th

at
w
(X

M
)
=

SN
R
(f
⇤ (

X
M
)|
X

M
)/
�
2 s

is
th

e
su

m
of

M
in

de
pe

nd
en

t
ra

nd
om

va
ri

ab
le
s
�
i
ea

ch
ha

vi
ng

a
pd

f
de

fin
ed

in
(4

.1
9)

.
T
he

re
fo

re
,

du
e

to
in

de
pe

nd
en

ce
,

th
e

pd
f

of
th

e
SN

R
is

gi
ve

n
by

th
e

co
nv

ol
ut

io
n

pr
od

uc
t,

de
no

te
d

by
⇤,

be
tw

ee
n

th
e

pd
f
of

M
ra

nd
om

va
ri

ab
le
s
�
i
:

g w
(w

)
=
g �

1
(w

)
⇤
g �

2
(w

)
⇤
··
·⇤

g �
M
(w

)

=
1

Q
M i
=
1
d
i

g v
1
(
w d
1
;k

1
,�

1
)
⇤
g v

2
(
w d
2
;k

2
,�

2
)
⇤
··
·⇤

g v
M
(
w d
M

;k
M
,�

M
).

(4
.2

0)

4.1. Robust sensor placement for signal extraction 47

due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

Case2: large 𝜽

(𝜃 < 𝜃!"#$%&) (𝜃 < 𝜃!"#$%&)

Non-discriminative
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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Case 1 : increasing ✓ (keeping ✓ < ✓median)
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(c) Small variance

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

46 Chapitre 4. Robust sensor placement for signal extraction

by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

≅ ≅ 1 >
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the

91

(c) Small variance

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

46 Chapitre 4. Robust sensor placement for signal extraction

by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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Case 1 : increasing ✓ (keeping ✓ < ✓median)
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).

50
C

ha
pi

tr
e

4.
R

ob
us

t
se

ns
or

pl
ac

em
en

t
fo

r
si

gn
al

ex
tr

ac
ti

on

Si
nc

e
d i

’s
an

d
u i

’s
ar

e
th

e
ei

ge
nv

al
ue

s
an

d
ei

ge
nv

ec
to

rs
of

A
,

it
yi

el
ds

P
M i
=
1
(d

i
u i

uT i
)
=

A
.

So
,
w
e

ha
ve

M X i
=
1

d i
y2 i

=
qT

A
q
+
2m

0 (
X

M
)T

A
q
+

m
0 (
X

M
)T

A
(m

0 (
X

M
))
.

(4
.1

7)

B
y

re
pl

ac
in

g
(4

.1
3)

an
d

(4
.1

1)
in

(4
.1

7)
,
w
e

ob
ta

in

M X i
=
1

d i
y2 i

=
h m

a
(X

M
)
+

C
a
(X

M
,X

M
)1 2

qi T
R
(X

M
,X

M
)h m

a
(X

M
)
+

C
a
(X

M
,X

M
)1 2

qi .

Si
nc

e
q

is
a

no
rm

al
ly

di
st

ri
bu

te
d

ra
nd

om
ve

ct
or

w
ith

ze
ro

m
ea

n
an

d
an

id
en

tit
y

co
va

ri
an

ce
m

at
ri

x,
an

d
al

so
m

a
(X

M
)

an
d

C
a
(X

M
,X

M
)

ar
e

th
e

m
ea

n
ve

ct
or

an
d

co
va

ri
an

ce
m

at
ri

x
of

th
e

m
od

el
of

th
e

sp
at

ia
lg

ai
n

re
sp

ec
tiv

el
y,

w
e

co
nc

lu
de

th
at

m
a
(X

M
)+

C
a
(X

M
,X

M
)1 2

q
fo

llo
w
s

th
e

sa
m

e
di

st
ri

bu
tio

n
as

a(
X

M
).

So
,
w
e

ha
ve

M X i
=
1

d i
y2 i

=
a(

X
M
)T

R
(X

M
,X

M
)a
(X

M
)T

=
1 �
2 s
SN

R
(f
⇤ (

X
M
)|X

M
)
=

w
(X

M
).

⌅

L
em

m
a

2
Si

nc
e

y i
is

a
no

rm
al

ly
di

st
ri

bu
te

d
sc

al
ar

w
ith

no
n-

ze
ro

m
ea

n
m

y i
an

d
va

ri
an

ce
on

e,
its

sq
ua

re
d

fo
rm

y2 i
fo

llo
w
s

a
no

nc
en

tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
tio

n
w
ith

th
e

nu
m

be
r

of
de

gr
ee

s
of

fr
ee

do
m

k i
=

1,
an

d
no

n-
ce

nt
ra

lit
y

pa
ra

m
et

er
�
i
=

m
2 y i
.

So
,

th
e

pd
f

of
th

e
ra

nd
om

va
ri

ab
le

v i
,

y2 i

be
co

m
es

g v
i
(v

i
;k

i
,�

i
)
=

1 2
ex
p
�

(v
i
+
�
i
)

2

✓
v i �
i

◆
(
k
i 4
�

1 2
)

I
k
i 2
�
1
(p

�
i
v i
),

(4
.1

8)

w
he

re
I ·
(·)

is
th

e
m

od
ifi

ed
B
es

se
lf

un
ct

io
n

of
th

e
fir

st
ki

nd
.
N

ow
,
by

de
fin

in
g
�
i
=

d i
v i

to
be

th
e

sc
al

ed
fo

rm
of

th
e

ra
nd

om
va

ri
ab

le
v i

w
ith

th
e

po
si

tiv
e

sc
al

e
fa

ct
or

d i
,
th

e
di

st
ri

bu
tio

n
of

�
i
be

co
m

es
as

fo
llo

w
s

:

g �
i
(�

i
)
=

1 d i
g v

i
(�

i d i
;k

i
,�

i
),

(4
.1

9)

de
no

tin
g
g v

i
(.
)

th
e

pd
f
of

th
e

ra
nd

om
va

ri
ab

le
v i

=
y2 i

w
ith

no
nc

en
tr
al

ch
i-
sq

ua
re

d
di

st
ri

bu
tio

n
de

fin
ed

in
(4

.4
3)

.

P
ro

p
os

it
io

n
2

(D
is

tr
ib

ut
io

n
of

w
(X

M
)
=

SN
R
(f

⇤ (
X

M
)|X

M
)/
�
2 s
)

Fr
om

Le
m

m
a

1
an

d
Le

m
m

a
2,

it
ca

n
be

co
nc

lu
de

d
th

at
w
(X

M
)
=

SN
R
(f
⇤ (

X
M
)|X

M
)/
�
2 s

is
th

e
su

m
of

M
in

de
pe

nd
en

tr
an

do
m

va
ri

ab
le
s
�
i
ea

ch
ha

vi
ng

a
pd

fd
efi

ne
d

in
(4

.1
9)

.T
he

re
fo

re
,

du
e

to
in

de
pe

nd
en

ce
,

th
e

pd
f

of
th

e
SN

R
is

gi
ve

n
by

th
e

co
nv

ol
ut

io
n

pr
od

uc
t,

de
no

te
d

by
⇤,

be
tw

ee
n

th
e

pd
f
of

M
ra

nd
om

va
ri

ab
le
s
�
i
:

g w
(w

)
=
g �

1
(w

)
⇤
g �

2
(w

)
⇤
··
·⇤

g �
M
(w

)

=
1

Q
M i
=
1
d i
g v

1
(
w d 1
;k

1
,�

1
)
⇤
g v

2
(
w d 2
;k

2
,�

2
)
⇤
··
·⇤

g v
M
(
w d M

;k
M
,�

M
).

(4
.2

0)
4.1. Robust sensor placement for signal extraction 47

due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).

erreur
de

label :
I quem
that you
have←meth
definition
ph
same

label

Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵
of SNR/�2

s , then the maximum likelihood can also be used as a sensor placement criterion.
In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M (w)

=
1

Q
M

i=1 di
gv1(

w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of ✓ on the cdf of the SNR (the proposed criterion JP (x, ✓)). a) In
the case 1 we see that increasing ✓ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter ✓ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that ✓ is always smaller than the median ✓median

1, and if we
set ✓ > ✓median the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter ✓ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.

Discriminative



Discrete v.s. Continuous Optimization

Optimization over a continuous spatial space (off-the-grid)

• Performance is limited by the grid size

Discrete spatial space  framework (on-the-grid)
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p
�1,

p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :
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, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low
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• Greedy approach: sequentially selecting N < M sensors at a time
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1.1. A preface to optimal sensor placement for signal extraction 5
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
�

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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4 Chapitre 1. Introduction

y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :
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where mn(xi, t0) = Ex
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is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)

�
=

Et

⇢
[n(x, ti)�mn(ti)] . [n(x, tj)�mn(tj)]

�

q
Et

�
n(x, ti)2

 
�mn(ti)2 .

q
Et

�
n(x, tj)2

 
�mn(tj)2

= 0,

where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]T

i2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface

Sensor

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

the color-map shown in Fig. 1.1. By installing M sensors at different positions on the maternal
skin surface, we have a set of noisy measurements according to (1.2).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)
is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions
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solved [Cur+91] to find the optimal M positions for sensor placement :

M = argmax
M⇢P;|M|=M

JH(XM), (2.46)

where JH(XM) = H
�
a(XM)

�
is the entropy of the spatial gain at the set of the positions

XM, being defined as follows :
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Using entropy for optimal sensor placement can be seen from another aspect. Consider
H
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to be the entropy of the spatial gain at the unobserved positions

conditioned on the measurements at the observed positions as follows :
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Then, the sensors are required to be located at positions such that H
�
a(XP\M) | y(XM)

�
is

minimized which implies that the observations at positions XM contain most of the informa-
tion about the spatial gain, and the unobserved positions do not have much more information
than the observed ones have. So, minimizing the conditional entropy of the unobserved posi-
tions can be a reasonable solution for sensor placement. This conditional entropy can also be
written as follows :
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�
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�
, (2.49)

Minimizing this criterion means that by subtracting the information obtained by the observed
positions, not much information remains in the rest of the positions. So, to achieve the best
sensor positions, we end up with the following minimization problem which is exactly the same
as in (2.46) :

M = argmax
M⇢P;|M|=M

H
�
a(XM)

�
= argmax

M⇢P;|M|=M

JH(XM). (2.50)

Finding the optimal solution to (2.50) requires a combinatorial search which has a high
computational cost, and according to [KLQ95] this problem is NP-hard. Therefore, a greedy
approach can be used to find a near optimal solution to this problem [MBC79] ; [Cre91]. In the
greedy approach, we assume that K sensors have already been placed at position XK = {xi}i2K
with size |K| = K  |M| = M , and we add the rest of the sensors one by one, i.e. each time
a single sensor is added at position xN with the size |N | = N = 1 leading to K + 1 number
of sensors. Taking into account the Gaussian assumption on the model of the spatial gain as
in (2.7), the conditional entropy is presented as follows :
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logCa(xN ,xN | XK) +

1

2
(log(2⇡) + 1), (2.51)

1.1. A preface to optimal sensor placement for signal extraction 5
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
�

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
n(xi, t0), n(xj , t0)

�
=

Ex

⇢
[n(xi, t0)�mn(xi)] . [n(xj , t0)�mn(xj)]

�

q
Ex

�
n(xi, t0)2

 
�mn(xi)2 .

q
Ex

�
n(xj , t0)2

 
�mn(xj)2

6= 0,
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is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :
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is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]T

i2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

the color-map shown in Fig. 1.1. By installing M sensors at different positions on the maternal
skin surface, we have a set of noisy measurements according to (1.2).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)
is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions

=
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solved [Cur+91] to find the optimal M positions for sensor placement :

M = argmax
M⇢P;|M|=M

JH(XM), (2.46)

where JH(XM) = H
�
a(XM)

�
is the entropy of the spatial gain at the set of the positions

XM, being defined as follows :

H
�
a(XM)

�
= �

Z +1

�1
pA

⇣
a(XM);⇥

⌘
log pA

⇣
a(XM);⇥

⌘
da(XM). (2.47)

Using entropy for optimal sensor placement can be seen from another aspect. Consider
H
�
a(XP\M) | y(XM)

�
to be the entropy of the spatial gain at the unobserved positions

conditioned on the measurements at the observed positions as follows :

JH
�
XP\M|XM

�
, H

�
a(XP\M) | y(XM)

�

= �
Z +1

�1

Z +1

�1
pA

⇣
a(XP\M), a(XM);⇥

⌘
log pA

�
a(XP\M) | y(XM)

�
da(XP\M)da(XM).

(2.48)

Then, the sensors are required to be located at positions such that H
�
a(XP\M) | y(XM)

�
is

minimized which implies that the observations at positions XM contain most of the informa-
tion about the spatial gain, and the unobserved positions do not have much more information
than the observed ones have. So, minimizing the conditional entropy of the unobserved posi-
tions can be a reasonable solution for sensor placement. This conditional entropy can also be
written as follows :

H
�
a(XP\M) | y(XM)

�
= H

�
a(XP)

�
�H

�
a(XM)

�
, (2.49)

Minimizing this criterion means that by subtracting the information obtained by the observed
positions, not much information remains in the rest of the positions. So, to achieve the best
sensor positions, we end up with the following minimization problem which is exactly the same
as in (2.46) :

M = argmax
M⇢P;|M|=M

H
�
a(XM)

�
= argmax

M⇢P;|M|=M

JH(XM). (2.50)

Finding the optimal solution to (2.50) requires a combinatorial search which has a high
computational cost, and according to [KLQ95] this problem is NP-hard. Therefore, a greedy
approach can be used to find a near optimal solution to this problem [MBC79] ; [Cre91]. In the
greedy approach, we assume that K sensors have already been placed at position XK = {xi}i2K
with size |K| = K  |M| = M , and we add the rest of the sensors one by one, i.e. each time
a single sensor is added at position xN with the size |N | = N = 1 leading to K + 1 number
of sensors. Taking into account the Gaussian assumption on the model of the spatial gain as
in (2.7), the conditional entropy is presented as follows :

H
�
a(xN ) | a(XK)

�
=

1

2
logCa(xN ,xN | XK) +

1

2
(log(2⇡) + 1), (2.51)
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Since the expression inside the expectation is scalar, it can be replaced by its trace, and by
using the cyclic property of trace, we have the following :

JE(XM) = Tr
h
E
n
ã(XM)ã(XM)T

o
Cn(XM,XM)�1

i
.

Now, setting E
n
ã(XM)ã(XM)T

o
= Ca(XM,XM) + ma(XM)ma(XM)T , and using the un-

certainty model (3.12), JE(XM) becomes :

JE(XM) = (3.14a)
ma(XM)TCn(XM,XM)�1ma(XM) (3.14b)

+Tr
h
Cn(XM,XM)�1Ca(XM,XM)

i
, (3.14c)

where Ca(XM,XM) 2 RM⇥M is the covariance matrix whose (i, j)th element is ka(xi,xj).
The above equation consists of two terms. The first term (3.14b) is the SNR based on the
average knowledge of the spatial gain. The additional term (3.14c) takes into account the
uncertainty on the spatial gain. In practice, the optimal sensor locations are thus obtained as

X̂M = argmax
XM2RD⇥M

JE(XM). (3.15)

However, this optimization problem is difficult to solve, because the criterion JE(XM) 1) is
non-convex, and 2) lies in a high dimensional space (M ⇥D). To overcome these difficulties,
we replace (3.15) by

X̂M = argmax
XM⇢XP

JE(XM), (3.16)

so that the search space has now a finite number of candidates.

After presenting an appropriate objective function and formulating the problem, it is requi-
red to provide an efficient way to solve the problem. Nevertheless, directly maximizing (3.16)
can lead to a high computational cost because it needs to place M sensors in a D-dimensional
space simultaneously, (i.e. it is an optimization problem of size M ⇥D). For instance, assume
that D = 3 and the candidates for sensor placement are in a cube of size 10⇥ 10⇥ 10, resul-
ting in P = 103 total number of candidates. If we aim to use M = 5 sensors, to find the best
sensor positions out of the candidates that maximize (3.14c), one needs to evaluate a total of⇣

103
5

⌘
= 103!

5!(103�5)! ' 8.25 ⇥ 1012 cases that corresponds to a combinatorial search which has
a very high computational cost. To avoid this, one can use a greedy approach that selects the
M sensors by sequentially selecting N < M sensors at a time. Assuming that K sensors have
already been placed at XK, and by defining R(XM,XM) , Cn(XM,XM)�1, to choose the
locations of the N following ones, the criterion (3.14) is recast as

JE(XN |XK) = E
(
⇥
ã(XK)

T , ã(XN )T
⇤ R(XK,XK) R(XK,XN )

R(XN ,XK) R(XN ,XN )

� 
ã(XK)
ã(XN )

� ����XK

)
(3.17)

= E
⇢

ã(XK)
TR(XK,XK)ã(XK) + 2⇥ ã(XK)

TR(XK,XN )ã(XN )

+ ã(XN )TR(XN ,XN )ã(XN )

����XK

�
.
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Algorithm 2 Sequential approach
1: Inputs : K = 0, XK = ;
2: At each iteration :
3: for j = 1, 2, · · · ,M do
4: Estimation of the spatial gain : a(XK) �! z(XK)
5: prediction of N new sensors positions : X̂N = argmaxXN JP (XN [XK; ✓|z(XK))
6: XK  � XN [XK
7: end for
8: XM  � XK
9: Output : XM

and

Ca(XM,XM|z(XK)) = E
(h

a(XM)�ma
�
XM|z(XK)

�ih
a(XM)�ma

�
XM|z(XK)

�iT
)

=Ca(XM,XM)�Ca(XM,XK)
h
Ca(XK,XK) + Cv(XK,XK)

i�1
Ca(XM,XK)

T , (4.29)

where Ca(XM,XK) and Ca(XK,XK) are blocks of the partitioned covariance matrix

Ca(XM,XM) =
⇥

Ca(XM,XK) Ca(XM,XN )
⇤
=


Ca(XK,XK) Ca(XK,XN )

Ca(XK,XN )T Ca(XN ,XN )

�
.

(4.30)

The estimated SNR, i.e. [SNR(f̂ (XN )|XK, z(XK)), is similar to (4.7), but, since XK is fixed,
it is now conditioned on z(XK) and also it is a function of XN only. As a(XM) is Gaussian,
the distribution of w(XN |XK) , (1/�2

s)[SNR(f̂ (XN )|XK, z(XK)) can be obtained in a similar
way as presented in Subsection 4.2, equation (2). With the distribution of w(XN |XK), we can
modify the criterion (4.22) to have the following robust sequential sensor placement criterion :

JP (XN , ✓|z(XK)) = Pr(w(XN |XK) > ✓) = 1�Gw(XN |XK)(✓). (4.31)

JP (XN , ✓|XK) = Pr(w(XN |XK) > ✓) = 1�Gw(XN |XK)(✓). (4.32)

In the next section, by assuming a perfect knowledge on the spatial gain, we will show how
the distribution of w(XN |XK) can be derived.

4.3.3 Perfect gain information

In this section by assuming a perfect knowledge on the spatial gain, we derive the distribu-
tion of w(XN |XK). If the information on the gain is assumed to be perfectly known at sensor
locations XK, that is

z(XK) = a(XK),

§ Choosing N other sensors’ locations

2. NOTHING

y(XM , t) = 8
>><

>>:

y(x1, t)
y(x2, t)

...
y(xM , t)

9
>>=

>>;
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XK

XN

�
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yK

yN

�
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aN

�

fP = f(XP )
y(XM , t) = a(XM )s(t) + n(XM , t)
ŝ(t) = fTy(XM , t)
ŝ(t) = fTa(XM )s(t) + fTn(XM , t)

SNR(f) =
E[(fT aMs(t))

2
]

E[(fTnM (t))
2
]

�2
s fT aMaT

M f
fTRn

M f

Rn
M = E[nM (t)nT

M (t)]

f⇤ = (Rn
M )�1aM , (1)

SNR(f⇤) = �2
S aTM (Rn

M )�1aM . (2)

J(XN |XK) = [aTK+N (Rn
K+N )�1aK+N |XK ] (3)

â(x) ⇠ GP(ma(x), Ra(x,x0)), (4)

Ĵ(XN |XK) = E[aTK+N (Rn
K+N )�1aK+N |XK ] (5)

= (ma
K+N )T (Rn

K+N )�1ma
K+N +Tr[(Rn

K+N )�1Ra
K+N ]

X̂N = argmax
XN

Ĵ(XN |XK). (6)

3. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

3.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (7)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (8)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (9)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (9) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (10)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (11)

3.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that
the output SNR (9) is maximum. According to (11), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (12)

is maximum: X⇤
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (10) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (12). To overcome
this, we assume that Rn

M can be modelled with a covariance
1The scaling factor is here not tackled since in source extraction, the main

goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.
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where Ca(XM,XK) and Ca(XK,XK) are blocks of the partitioned covariance matrix

Ca(XM,XM) =
⇥

Ca(XM,XK) Ca(XM,XN )
⇤
=


Ca(XK,XK) Ca(XK,XN )

Ca(XK,XN )T Ca(XN ,XN )
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The estimated SNR, i.e. [SNR(f̂ (XN )|XK, z(XK)), is similar to (4.7), but, since XK is fixed,
it is now conditioned on z(XK) and also it is a function of XN only. As a(XM) is Gaussian,
the distribution of w(XN |XK) , (1/�2

s)[SNR(f̂ (XN )|XK, z(XK)) can be obtained in a similar
way as presented in Subsection 4.2, equation (2). With the distribution of w(XN |XK), we can
modify the criterion (4.22) to have the following robust sequential sensor placement criterion :

JP (XN , ✓|z(XK)) = Pr(w(XN |XK) > ✓) = 1�Gw(XN |XK)(✓). (4.31)

JP (XN , ✓|XK) = Pr(w(XN |XK) > ✓) = 1�Gw(XN |XK)(✓). (4.32)

In the next section, by assuming a perfect knowledge on the spatial gain, we will show how
the distribution of w(XN |XK) can be derived.

4.3.3 Perfect gain information

In this section by assuming a perfect knowledge on the spatial gain, we derive the distribu-
tion of w(XN |XK). If the information on the gain is assumed to be perfectly known at sensor
locations XK, that is

z(XK) = a(XK),
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Since the expression inside the expectation is scalar, it can be replaced by its trace, and by
using the cyclic property of trace, we have the following :

JE(XM) = Tr
h
E
n
ã(XM)ã(XM)T

o
Cn(XM,XM)�1

i
.

Now, setting E
n
ã(XM)ã(XM)T

o
= Ca(XM,XM) + ma(XM)ma(XM)T , and using the un-

certainty model (3.12), JE(XM) becomes :

JE(XM) = (3.14a)
ma(XM)TCn(XM,XM)�1ma(XM) (3.14b)

+Tr
h
Cn(XM,XM)�1Ca(XM,XM)

i
, (3.14c)

where Ca(XM,XM) 2 RM⇥M is the covariance matrix whose (i, j)th element is ka(xi,xj).
The above equation consists of two terms. The first term (3.14b) is the SNR based on the
average knowledge of the spatial gain. The additional term (3.14c) takes into account the
uncertainty on the spatial gain. In practice, the optimal sensor locations are thus obtained as

X̂M = argmax
XM2RD⇥M

JE(XM). (3.15)

However, this optimization problem is difficult to solve, because the criterion JE(XM) 1) is
non-convex, and 2) lies in a high dimensional space (M ⇥D). To overcome these difficulties,
we replace (3.15) by

X̂M = argmax
XM⇢XP

JE(XM), (3.16)

so that the search space has now a finite number of candidates.

After presenting an appropriate objective function and formulating the problem, it is requi-
red to provide an efficient way to solve the problem. Nevertheless, directly maximizing (3.16)
can lead to a high computational cost because it needs to place M sensors in a D-dimensional
space simultaneously, (i.e. it is an optimization problem of size M ⇥D). For instance, assume
that D = 3 and the candidates for sensor placement are in a cube of size 10⇥ 10⇥ 10, resul-
ting in P = 103 total number of candidates. If we aim to use M = 5 sensors, to find the best
sensor positions out of the candidates that maximize (3.14c), one needs to evaluate a total of⇣

103
5

⌘
= 103!

5!(103�5)! ' 8.25 ⇥ 1012 cases that corresponds to a combinatorial search which has
a very high computational cost. To avoid this, one can use a greedy approach that selects the
M sensors by sequentially selecting N < M sensors at a time. Assuming that K sensors have
already been placed at XK, and by defining R(XM,XM) , Cn(XM,XM)�1, to choose the
locations of the N following ones, the criterion (3.14) is recast as

JE(XN |XK) = E
(
⇥
ã(XK)

T , ã(XN )T
⇤ R(XK,XK) R(XK,XN )

R(XN ,XK) R(XN ,XN )

� 
ã(XK)
ã(XN )

� ����XK

)
(3.17)

= E
⇢

ã(XK)
TR(XK,XK)ã(XK) + 2⇥ ã(XK)

TR(XK,XN )ã(XN )

+ ã(XN )TR(XN ,XN )ã(XN )

����XK

�
.
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Estimation of the spatial gain

2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that
the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X⇤
M = argmaxXM J(XM ).

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

A difficulty arises from this scheme: the optimal extrac-
tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
S

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
Once the sensor locations X̂M are obtained, one can ex-

tract the source of interest (2) using the separation vector

f̂M = (Rn
M )�1ma

M . (12)

Mathematical notations and tools

m
a(XK) = a(XK) + b(XK) + u(XK) (1)

a(XM) = m
a(XM) + u(XM) (2)

m
a(XM) = a

⇤(XM) + b(XM) (3)

ma(x) = a⇤(x) + b(x) (4)

u(x) ⇠ GP(0, ka(x,x0)) (5)

a(x) ⇠ GP(ma(x), ka(x,x0)) (6)

â(x) = a⇤(x) + b(x) + u(x) (7)

â(x) = ma(x) + u(x) (8)

f̂(XM) = C
n(XM,XM)�1

â(XM) (9)

f
⇤(XM) = C

n(XM,XM)�1
a
⇤(XM) (10)
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: true value of the spatial gain

: estimated value of the spatial gain
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§ Random:
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Estimated spatial gain:
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UncertaintyBias

• Oracle: true SNR with the true values of the spatial gain : 
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The effect of uncertainty

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10



Numerical results

Robust sensor placement for signal extraction

22 / 43



Simulation setup

4.4. Numerical experiments 63

0 0.5 1

-1

0

1

0 0.5 1

-0.1

-0.05

0

Figure 4.2: The effect of the parameter ⇢a on the smoothness of the spatial gain. By increasing
⇢a, the spatial gain becomes smoother.

4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP

�
m(x), C(x,x0)

�
, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio

One-dimension grid:                                    , in the normalized range 
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4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP

�
m(x), C(x,x0)

�
, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio

• The grid size    : depending on the smoothness of the signal
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4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP
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, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio
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numerical tools to evaluate the performance of the criteria from different aspects.
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the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
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different simulation parts. In all the cases, we assume that
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where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
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and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
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4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
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, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
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Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
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MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
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ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
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Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
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, with a square exponential covariance function C(x,x0) =
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ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
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Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP
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, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio
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4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP
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m(x), C(x,x0)
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, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio
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4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of ✓ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi 2 [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP
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m(x), C(x,x0)

�
, with a square exponential covariance function C(x,x0) =

�2 exp(�(x�x0)2/(2⇢2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ⇢ is a smoothness parameter where a small ⇢ compared to 1 means fast spatial
changes, while a large ⇢ ' 1 means smooth changes. The effect of ⇢a on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ⇢a = 0.05 on the left, and
⇢a = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio: drawn from GP•
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m
a(XK) = a(XK) + b(XK) + u(XK) (1)

a(XM) = m
a(XM) + u(XM) (2)

m
a(XM) = a

⇤(XM) + b(XM) (3)

ma(x) = a⇤(x) + b(x) (4)

u(x) ⇠ GP(0, ka(x,x0)) (5)

a(x) ⇠ GP(ma(x), ka(x,x0)) (6)

â(x) = a⇤(x) + b(x) + u(x) (7)

â(x) = ma(x) + u(x) (8)

1
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between the bias and the spatial gain at each position remains intact for each Monte-Carlo
realization. Note that when the GP is scaled in this way, it is not a GP anymore. This is
due to the fact that the scaling factor of the spatial gain is different at each position, and so
the aspect ratio between the spatial gain at each pair of the positions will be changed. The
subscripts (.)a, (.)n, (.)b, and (.)u refer to the GP parameters of the spatial gain, the noise,
the bias and the uncertainty of the spatial gain, respectively. The smoothness parameters ⇢a,
⇢n, ⇢b, and ⇢u, and the variances �a, �n, �b, and �u will be changed in different parts of the
numerical experiments. We set all the prior mean functions to be equal to 0 except the mean
function of the spatial gain which is generated according to (4.48). Note that, in practice, we
do not have the actual spatial gain a⇤(x), and in our simulations, as an oracle, we generate
randomly one realization from a GP with zero-mean and covariance parameters �a and ⇢a.

To implement the proposed algorithm JP (xN , ✓|â(XK)), it is required to choose a relevant
value for the parameter ✓. So, we suggest the following model :

✓ = [SNR(f̂ (XK)) + �
h
[SNR(f̂ (XM))� [SNR(f̂ (XK))

i
. (4.49)

In the above equation, by using (4.33), [SNR(f̂ (XK)) and [SNR(f̂ (XM)) are the means of the
SNR before and after adding the new N sensors, respectively. Setting ✓ according to the above
model helps us to use a meaningful value for this parameter, which is relative to the initial
value of the SNR added by a factor of the increase in the SNR after adding new sensors.
Specifically, by setting � = 0, we set the parameter ✓ equal to the initial value of the SNR
before adding the new sensor. On the other hand, if we set � = 1, the parameter ✓ becomes
equal to the average SNR after adding the new sensors. In the rest of the simulation part, we
parameterize JP as a function of � instead of ✓.

4.4.2 Failure region and Failure[%] as measures for the uncertainty effect

Although JE and JP are criteria targeting SNR, uncertainty on a(x) may lead to
large values of these criteria at positions where in practice the value of the true output
SNR(f̂ (XM)|XM) may be decreased. The true SNR is given by (4.3), where f(XM) = f̂ (XM)
is the estimated extraction vector. This vector is given by f̂ (XM) = Cn(XM,XM)�1ma(XM)
in the non-sequential approach and by f̂ (XM) = Cn(XM,XM)�1ma(XM|XK) in the sequen-
tial approach. As a consequence, the true output SNR can be rewritten as

SNR(f̂ (XM)|XM) =
�2
s f̂ (XM)Ta(XM)a(XM)T f̂ (XM)

f̂ (XM)TCn(XM,XM)f̂ (XM)
. (4.50)

Note that (4.50) differs from the estimated SNR, i.e. [SNR (4.7), since this true SNR (4.50)
depends on the true spatial gain a(XM), contrary to [SNR which only depends on the esti-
mation of the spatial gain a(XM). In the rest, the set of positions that deteriorates the true
SNR is called failure region (FR).

Fig. 4.3 is an example to understand the notion of FR. In this figure, the size of the grid
is 300, and K = 3 sensors have already been located at the positions XK = [0.25, 0.5, 0.75]T ,

[’Optimal Sensor Placement for Signal Extraction‘, F. Ghayem, B. Rivet, C. Jutten, R. C. Farias, ICASSP2019, Brighton, UK ]

Average SNR:

3.2. Mean of the SNR as a criterion for optimal sensor placement 29

Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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Since the expression inside the expectation is scalar, it can be replaced by its trace, and by
using the cyclic property of trace, we have the following :

JE(XM) = Tr
h
E
n
ã(XM)ã(XM)T

o
Cn(XM,XM)�1

i
.

Now, setting E
n
ã(XM)ã(XM)T

o
= Ca(XM,XM) + ma(XM)ma(XM)T , and using the un-

certainty model (3.12), JE(XM) becomes :

JE(XM) = (3.14a)
ma(XM)TCn(XM,XM)�1ma(XM) (3.14b)

+Tr
h
Cn(XM,XM)�1Ca(XM,XM)

i
, (3.14c)

where Ca(XM,XM) 2 RM⇥M is the covariance matrix whose (i, j)th element is ka(xi,xj).
The above equation consists of two terms. The first term (3.14b) is the SNR based on the
average knowledge of the spatial gain. The additional term (3.14c) takes into account the
uncertainty on the spatial gain. In practice, the optimal sensor locations are thus obtained as

X̂M = argmax
XM2RD⇥M

JE(XM). (3.15)

However, this optimization problem is difficult to solve, because the criterion JE(XM) 1) is
non-convex, and 2) lies in a high dimensional space (M ⇥D). To overcome these difficulties,
we replace (3.15) by

X̂M = argmax
XM⇢XP

JE(XM), (3.16)

so that the search space has now a finite number of candidates.

After presenting an appropriate objective function and formulating the problem, it is requi-
red to provide an efficient way to solve the problem. Nevertheless, directly maximizing (3.16)
can lead to a high computational cost because it needs to place M sensors in a D-dimensional
space simultaneously, (i.e. it is an optimization problem of size M ⇥D). For instance, assume
that D = 3 and the candidates for sensor placement are in a cube of size 10⇥ 10⇥ 10, resul-
ting in P = 103 total number of candidates. If we aim to use M = 5 sensors, to find the best
sensor positions out of the candidates that maximize (3.14c), one needs to evaluate a total of⇣

103
5

⌘
= 103!

5!(103�5)! ' 8.25 ⇥ 1012 cases that corresponds to a combinatorial search which has
a very high computational cost. To avoid this, one can use a greedy approach that selects the
M sensors by sequentially selecting N < M sensors at a time. Assuming that K sensors have
already been placed at XK, and by defining R(XM,XM) , Cn(XM,XM)�1, to choose the
locations of the N following ones, the criterion (3.14) is recast as

JE(XN |XK) = E
(
⇥
ã(XK)

T , ã(XN )T
⇤ R(XK,XK) R(XK,XN )

R(XN ,XK) R(XN ,XN )

� 
ã(XK)
ã(XN )

� ����XK

)
(3.17)

= E
⇢

ã(XK)
TR(XK,XK)ã(XK) + 2⇥ ã(XK)

TR(XK,XN )ã(XN )

+ ã(XN )TR(XN ,XN )ã(XN )

����XK

�
.
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)
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Figure 4.3: Failure region is where the true value of the SNR with estimated extraction
vector f̂ (XM) is smaller than its initial value before adding the new sensors, i.e. when �[SNR
(the blue curve) defined in (4.51) is negative. Here, the mean of the SNR is used as the
criterion depicted with a red color. The blue curve represents the variation of the true SNR
with estimated f̂ (XM). The tilde superscript represents the normalization of the criteria.

which are marked by circles. Here, we considered an unbiased situation, i.e. b(x) = 0, the
variances are set to be �a = 0.15, �u = 0.15, �n = 0.5, and the smoothness parameters are
⇢a = 0.2, ⇢u = 0.2, ⇢n = 0.1. The standard deviation of the source signal is �s = 2. To
illustrate the failure phenomenon, we use JE (3.14) as the placement criterion. Now, the aim
is to find the best location for the 4th sensor. In this figure, the tilde superscript indicates that
the function is normalized such that its maximum value is equal to one, and the initial value
is equal to zero. The normalized variation of SNR, denoted �]SNR(f̂ (XM)), is as follows :

�]SNR(f̂ (XM)) =
SNR(f̂ (XM))� SNR(f̂ (XK))

SNRmax(f̂ (XM))� SNR(f̂ (XK))
, (4.51)

where SNR(f̂ (XK)) represents the initial value of the SNR before adding the new sensor, and
SNRmax(f̂ (XM)) is the maximum value of the SNR after adding the new sensor. Note that
in this chapter, the points of interest in the criteria are the locations of the maxima (and not
their amplitudes), which are not affected by the normalization. In Fig. 4.3 it is seen that, due
to the uncertainty, the normalized variation of the true SNR, i.e. �]SNR(f̂ (XM)), can take
negative values at some regions, which means that by placing sensors at these positions, the
SNR will take smaller values compared to the initial SNR. Therefore, since SNR(f̂ (XM)) <
SNR(f̂ (XK)) in FR, the numerator of (4.51) becomes negative, and as such, �]SNR(f̂ (XM))
becomes negative. In this figure, FR is marked with dashed arrows. As depicted, although the
true SNR takes quite smaller value in FR, the suggested criterion takes significant values at
these locations. In particular, the criterion takes its maximum value in a point x inside FR,
and so, a failure has happened due to the uncertainty. Therefore, this is an example of the
lack of robustness of the criterion JE .

To analyze the affect of the uncertainty and the bias in the model of the spatial gain on
the size of the FR, we need to define a quantitative statistical measure. To do so, we can
simulate NMC Monte-Carlo realizations of the gain, bias, uncertainty and noise GP, and then
count the total number of sensors positions within the FR, here denoted NFR. For a total size

2 Mathematical-notation

SNR(̂f(XM)) =
Et

h�̂
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�ŜNR(f̂(XM))

⇤
= 1
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(a) The influence of a smoothness, with � = 0.1.
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(b) The influence of smoothness ratio, with ⇢a = 0.1.

Figure 4.7: The effect of the smoothness of the spatial gain and the noise on the robustness.
(a) Here, different smoothness values of the spatial gain are considered, and the smoothness
ratio between the noise and the spatial gain is set as � = ⇢n/⇢a = 0.1. As the spatial gain gets
closer to a spatial white noise, FPR[%] increases. (b) Here, the effect of the noise smoothness
is studied. The more similar smoothness degree of the noise and the spatial gain, the larger
FPR[%] is. Compared to the spatial gain, as the noise gets closer to a white noise (decreasing
�), or smooth noise (increasing �), FPR[%] decreases.

the region where �]SNR(f̂ (XM)) is negative, and the criterion is zero. Finally, false negative
(FN) is related to the position with positive �]SNR(f̂ (XM)), and zero value for the underlying
criterion. Now, according to this region classification, and under different combinations of the
values of ⇢a and ⇢n, we calculate the false positive rate (FPR) of a criteria as follows :

FPR =
false positive

total number of negatives
=

FP

TN + FP
, (4.53)

where, the denominator is actually the size of the FR. It is noticeable that if the size of the FR
is small, although the FPR gets large, the probability of selecting a position in FR is small.
Conversely, if the size of the FR is large, although FPR gets small, the probability of selecting
a sensor in FR can be large. To avoid these two marginal cases, according to Fig. 4.4, we set
�u 2 [0.1, 0.8] which provides a moderate Failure[%] between 8% and 30%.

Fig. 4.7a is provided to show the robustness of the proposed criterion JP (xN , �|a(XK))
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then using (4.9) we have

1

�2
s

[SNR
�
f̂ (XN )|XK, z(XK) = a(XK)

�
(4.32)

=


a(XK)
a(XN )

�T 
R(XK,XK) R(XK,XN )
R(XK,XN )T R(XN ,XN )

� 
a(XK)
a(XN )

�

= a(XK)
TR(XK,XK)a(XK) + 2a(XK)

TR(XK,XN )a(XN ) + a(XN )TR(XN ,XN ), a(XN ).

where
R(XM,XM) =


R(XK,XK) R(XK,XN )
R(XK,XN )T R(XN ,XN )

�
.

The conditioned random vector a(XN )|z(XN ) is also Gaussian whose mean ma(XN |XK)
and covariance Ca(XN ,XN |XK) can be obtained, respectively, from (4.28) and (4.29) by
setting the noise covariance equal to zero, i.e. Cv(XK,XK) = 0. They are given by

ma(XN |XK) = E
n
a(XN )|a(XK) = z(XK)

o
(4.33)

= ma(XN ) + Ca(XK,XN )TCa(XK,XK)
�1

⇥
a(XK)� m(XK)

⇤
. (4.34)

and

Ca(XN ,XN |XK) =E
n⇥

a(XN )ma(XN |XK)
⇤⇥

a(XN )� ma(XN |XK)
⇤
T |a(XK) = z(XK)

o

=Ca(XN ,XN )� Ca(XN ,XK)Ca(XK,XK)
�1Ca(XN ,XK)

T . (4.35)

Since by definition (4.8), R(XN ,XN ) is invertible, then, by factorizing (4.33), we have

[SNR
⇣
f̂ (XN )|XK, a(XK) = z(XK)

⌘
= �2

s⇥
( 

a(XK)
T

⇣
R(XK,XK)� R(XK,XN )R(XN ,XN )�1R(XK,XN )T

⌘
a(XK)

�

+

⇣
a(XN ) + R(XN ,XN )�1R(XN ,XK)a(XK)

⌘
T

⇥

R(XN ,XN )
⇣
a(XN ) + R(XN ,XN )�1R(XN ,XK)a(XK)

⌘� )
. (4.36)

Note that the second term is a quadratic form of a Gaussian vector, while the first term
is deterministic. Therefore, the random variable

w(XN |XK) ,
1

�2
s

[SNR
⇣
f̂ (XN )|XK, a(XK) = z(XK)

⌘
(4.37)

� a(XK)
T
�
R(XK,XK)� R(XK,XN )R(XN ,XN )�1R(XK,XN )T

�
a(XK)

has a distribution that can be obtained as described in Subsection 4.2. So, we have the following
proposition.
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Figure 4.7: The effect of the smoothness of the spatial gain and the noise on the robustness.
(a) Here, different smoothness values of the spatial gain are considered, and the smoothness
ratio between the noise and the spatial gain is set as � = ⇢n/⇢a = 0.1. As the spatial gain gets
closer to a spatial white noise, FPR[%] increases. (b) Here, the effect of the noise smoothness
is studied. The more similar smoothness degree of the noise and the spatial gain, the larger
FPR[%] is. Compared to the spatial gain, as the noise gets closer to a white noise (decreasing
�), or smooth noise (increasing �), FPR[%] decreases.

the region where �]SNR(f̂ (XM)) is negative, and the criterion is zero. Finally, false negative
(FN) is related to the position with positive �]SNR(f̂ (XM)), and zero value for the underlying
criterion. Now, according to this region classification, and under different combinations of the
values of ⇢a and ⇢n, we calculate the false positive rate (FPR) of a criteria as follows :

FPR =
false positive

total number of negatives
=

FP

TN + FP
, (4.53)

where, the denominator is actually the size of the FR. It is noticeable that if the size of the FR
is small, although the FPR gets large, the probability of selecting a position in FR is small.
Conversely, if the size of the FR is large, although FPR gets small, the probability of selecting
a sensor in FR can be large. To avoid these two marginal cases, according to Fig. 4.4, we set
�u 2 [0.1, 0.8] which provides a moderate Failure[%] between 8% and 30%.

Fig. 4.7a is provided to show the robustness of the proposed criterion JP (xN , �|a(XK))
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)Average SNR:

Classical kriging: 
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Figure 4.9: In this figure, the performance of the proposed method is compared with the prior
works by using a sequential approach. Two situations are studied in this figure : �u = 0.1 in
the first column, and �u = 0.8 in the second column. In the top, the average output SNR
is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a
low and high uncertainty levels, the proposed method provides a larger SNR, as well as more
robustness against the uncertainty. Note that in (c) and (d), JMI and JE largely overlap.

considering that 10 sensors are added, for the proposed criterion, SNR(f̂ (XM)) drops from
30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.5 Other numerical tools for performance evaluation

Previously, in Subsection 4.4.2, we discussed about FR as a notion to determine the regions
which have negative SNR caused by the uncertainty, and then, we denoted the portion of the
spatial grid within the FR by Failure[%]. Following that, in Subsection 4.4.4, we introduced
FPR as a measure to represent the robustness of a criterion against uncertainty by using the
concept of failure. We explained that one can report the robustness of a criterion against
uncertainty by counting the number of the times that the criterion suggests to put a sensor
in the FR (i.e., the probability that the criterion takes its maximum value at FR).

: entropy
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Figure 4.9: In this figure, the performance of the proposed method is compared with the prior
works by using a sequential approach. Two situations are studied in this figure : �u = 0.1 in
the first column, and �u = 0.8 in the second column. In the top, the average output SNR
is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a
low and high uncertainty levels, the proposed method provides a larger SNR, as well as more
robustness against the uncertainty. Note that in (c) and (d), JMI and JE largely overlap.

considering that 10 sensors are added, for the proposed criterion, SNR(f̂ (XM)) drops from
30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.5 Other numerical tools for performance evaluation

Previously, in Subsection 4.4.2, we discussed about FR as a notion to determine the regions
which have negative SNR caused by the uncertainty, and then, we denoted the portion of the
spatial grid within the FR by Failure[%]. Following that, in Subsection 4.4.4, we introduced
FPR as a measure to represent the robustness of a criterion against uncertainty by using the
concept of failure. We explained that one can report the robustness of a criterion against
uncertainty by counting the number of the times that the criterion suggests to put a sensor
in the FR (i.e., the probability that the criterion takes its maximum value at FR).

: mutual information
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Figure 4.4: Failure [%] is a measure to compute the ratio of the sensor placement region which
is in the failure region. (a) In this figure, the effect of the uncertainty level on the Failure [%]
is depicted. Here, the bias is considered to be equal to 0. (b) The effect of bias on Failure [%]
is depicted in this figure. The variance of the uncertainty is set equal to �u = 0.01.

of spatial grid NP , we define the failure rate as :

Failure [%] , Size of the FR
Total size of the spatial grid

=
NFR

NP

. (4.52)

Fig. 4.4 illustrates the effect of uncertainty and bias on Failure[%]. In this figure, three
initial sensors are placed at XK = {0.25, 0.5, 0.75}, and we place the 4th sensor using JE .
The smoothness parameters are set as ⇢a = ⇢u = 0.2, ⇢n = 0.01, and the variances are set
�a = 0.5 and �n = 0.01. We generate Na

MC
= 10 realizations for the spatial gain, and for each

realization, we consider 50 runs for the bias, uncertainty and noise (N b

MC
= Nu

MC
= Nn

MC
=

50), leading to a total number of NMC = 500 Monte-Carlo (MC) realizations. Then, Failure[%]
is evaluated according to (4.52). In this figure, the effects of the bias and the uncertainty on
Failure[%] are studied separately. Firstly, in Fig. 4.4a, we consider an unbiased situation setting
b(x) = 0, and different uncertainty levels in the interval �u 2

⇥
10�3; 100

⇤
are used. The blue

curve is the average of Failure[%] over all NMC realizations, and the gray shadow represents
the standard deviation. As it was expected, by increasing �u, the average and the variance of
Failure[%] increase. This experiment is repeated in Fig. 4.4b to study the effect of the bias.
In this figure we use the previous configuration to set up the parameters, except that �u is
kept fixed to �u = 0.01, and the level of the bias is changed in the range �b 2

⇥
10�3; 100

⇤
.

As it can be seen, in average, the effect of the bias implies Failure[%] of about 10 % which
remains almost constant at this amount for �b  0.1. If the level of bias goes beyond this
value, the effect of the bias on Failure[%] becomes more significant, which means that the
suggested model for the spatial gain is not appropriate, and better methods need to be used
in order to provide the best approximation for the spatial gain. Since our proposed method
is only focused on the uncertainty of the spatial gain, henceforth we assume that a suitable
model is used for the spatial gain, and we set b(x) = 0.
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1.1. A preface to optimal sensor placement for signal extraction 5
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fTy(XK , t) = fTa(XK)s(t) + fTn(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fTaKs(t))2] / E[(fTnK(t))2], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (f

TaKaTKf) / (fTRn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)�1aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aTK(Rn

K)�1aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aTM (Rn
M )�1aM (6)

is maximum: X�
M = argmaxXM J(XM ).

A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âTM (Rn
M )�1âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = argmax
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (11)

where K+N means {XN
�

XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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A difficulty arises from this scheme: the optimal extrac-
tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
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tion, such as the output of independent component analysis
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element is ka(xi,xj) and Tr(·) is the trace operator. The op-
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Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as
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K+N )�1âK+N |XK ], (11)

where K+N means {XN
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =
[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the

Noise:

4 Chapitre 1. Introduction

radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
n(xi, t0), n(xj , t0)

�
=

Ex

⇢
[n(xi, t0)�mn(xi)] . [n(xj , t0)�mn(xj)]

�

q
Ex

�
n(xi, t0)2

 
�mn(xi)2 .

q
Ex

�
n(xj , t0)2

 
�mn(xj)2

6= 0,

where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)

�
=

Et

⇢
[n(x, ti)�mn(ti)] . [n(x, tj)�mn(tj)]

�

q
Et

�
n(x, ti)2

 
�mn(ti)2 .

q
Et

�
n(x, tj)2

 
�mn(tj)2

= 0,

where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]T

i2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =
[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface

Sensor

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

the color-map shown in Fig. 1.1. By installing M sensors at different positions on the maternal
skin surface, we have a set of noisy measurements according to (1.2).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)
is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions

=
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solved [Cur+91] to find the optimal M positions for sensor placement :

M = argmax
M⇢P;|M|=M

JH(XM), (2.46)

where JH(XM) = H
�
a(XM)

�
is the entropy of the spatial gain at the set of the positions

XM, being defined as follows :

H
�
a(XM)

�
= �

Z +1

�1
pA

⇣
a(XM);⇥

⌘
log pA

⇣
a(XM);⇥

⌘
da(XM). (2.47)

Using entropy for optimal sensor placement can be seen from another aspect. Consider
H
�
a(XP\M) | y(XM)

�
to be the entropy of the spatial gain at the unobserved positions

conditioned on the measurements at the observed positions as follows :

JH
�
XP\M|XM

�
, H

�
a(XP\M) | y(XM)

�

= �
Z +1

�1

Z +1

�1
pA

⇣
a(XP\M), a(XM);⇥

⌘
log pA

�
a(XP\M) | y(XM)

�
da(XP\M)da(XM).

(2.48)

Then, the sensors are required to be located at positions such that H
�
a(XP\M) | y(XM)

�
is

minimized which implies that the observations at positions XM contain most of the informa-
tion about the spatial gain, and the unobserved positions do not have much more information
than the observed ones have. So, minimizing the conditional entropy of the unobserved posi-
tions can be a reasonable solution for sensor placement. This conditional entropy can also be
written as follows :

H
�
a(XP\M) | y(XM)

�
= H

�
a(XP)

�
�H

�
a(XM)

�
, (2.49)

Minimizing this criterion means that by subtracting the information obtained by the observed
positions, not much information remains in the rest of the positions. So, to achieve the best
sensor positions, we end up with the following minimization problem which is exactly the same
as in (2.46) :

M = argmax
M⇢P;|M|=M

H
�
a(XM)

�
= argmax

M⇢P;|M|=M

JH(XM). (2.50)

Finding the optimal solution to (2.50) requires a combinatorial search which has a high
computational cost, and according to [KLQ95] this problem is NP-hard. Therefore, a greedy
approach can be used to find a near optimal solution to this problem [MBC79] ; [Cre91]. In the
greedy approach, we assume that K sensors have already been placed at position XK = {xi}i2K
with size |K| = K  |M| = M , and we add the rest of the sensors one by one, i.e. each time
a single sensor is added at position xN with the size |N | = N = 1 leading to K + 1 number
of sensors. Taking into account the Gaussian assumption on the model of the spatial gain as
in (2.7), the conditional entropy is presented as follows :

H
�
a(xN ) | a(XK)

�
=

1

2
logCa(xN ,xN | XK) +

1

2
(log(2⇡) + 1), (2.51)
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Since the expression inside the expectation is scalar, it can be replaced by its trace, and by
using the cyclic property of trace, we have the following :

JE(XM) = Tr
h
E
n
ã(XM)ã(XM)T

o
Cn(XM,XM)�1

i
.

Now, setting E
n
ã(XM)ã(XM)T

o
= Ca(XM,XM) + ma(XM)ma(XM)T , and using the un-

certainty model (3.12), JE(XM) becomes :

JE(XM) = (3.14a)
ma(XM)TCn(XM,XM)�1ma(XM) (3.14b)

+Tr
h
Cn(XM,XM)�1Ca(XM,XM)

i
, (3.14c)

where Ca(XM,XM) 2 RM⇥M is the covariance matrix whose (i, j)th element is ka(xi,xj).
The above equation consists of two terms. The first term (3.14b) is the SNR based on the
average knowledge of the spatial gain. The additional term (3.14c) takes into account the
uncertainty on the spatial gain. In practice, the optimal sensor locations are thus obtained as

X̂M = argmax
XM2RD⇥M

JE(XM). (3.15)

However, this optimization problem is difficult to solve, because the criterion JE(XM) 1) is
non-convex, and 2) lies in a high dimensional space (M ⇥D). To overcome these difficulties,
we replace (3.15) by

X̂M = argmax
XM⇢XP

JE(XM), (3.16)

so that the search space has now a finite number of candidates.

After presenting an appropriate objective function and formulating the problem, it is requi-
red to provide an efficient way to solve the problem. Nevertheless, directly maximizing (3.16)
can lead to a high computational cost because it needs to place M sensors in a D-dimensional
space simultaneously, (i.e. it is an optimization problem of size M ⇥D). For instance, assume
that D = 3 and the candidates for sensor placement are in a cube of size 10⇥ 10⇥ 10, resul-
ting in P = 103 total number of candidates. If we aim to use M = 5 sensors, to find the best
sensor positions out of the candidates that maximize (3.14c), one needs to evaluate a total of⇣

103
5

⌘
= 103!

5!(103�5)! ' 8.25 ⇥ 1012 cases that corresponds to a combinatorial search which has
a very high computational cost. To avoid this, one can use a greedy approach that selects the
M sensors by sequentially selecting N < M sensors at a time. Assuming that K sensors have
already been placed at XK, and by defining R(XM,XM) , Cn(XM,XM)�1, to choose the
locations of the N following ones, the criterion (3.14) is recast as

JE(XN |XK) = E
(
⇥
ã(XK)

T , ã(XN )T
⇤ R(XK,XK) R(XK,XN )

R(XN ,XK) R(XN ,XN )

� 
ã(XK)
ã(XN )

� ����XK

)
(3.17)

= E
⇢

ã(XK)
TR(XK,XK)ã(XK) + 2⇥ ã(XK)

TR(XK,XN )ã(XN )

+ ã(XN )TR(XN ,XN )ã(XN )

����XK

�
.
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Figure 4.4: Failure [%] is a measure to compute the ratio of the sensor placement region which
is in the failure region. (a) In this figure, the effect of the uncertainty level on the Failure [%]
is depicted. Here, the bias is considered to be equal to 0. (b) The effect of bias on Failure [%]
is depicted in this figure. The variance of the uncertainty is set equal to �u = 0.01.

of spatial grid NP , we define the failure rate as :

Failure [%] , Size of the FR
Total size of the spatial grid

=
NFR

NP

. (4.52)

Fig. 4.4 illustrates the effect of uncertainty and bias on Failure[%]. In this figure, three
initial sensors are placed at XK = {0.25, 0.5, 0.75}, and we place the 4th sensor using JE .
The smoothness parameters are set as ⇢a = ⇢u = 0.2, ⇢n = 0.01, and the variances are set
�a = 0.5 and �n = 0.01. We generate Na

MC
= 10 realizations for the spatial gain, and for each

realization, we consider 50 runs for the bias, uncertainty and noise (N b

MC
= Nu

MC
= Nn

MC
=

50), leading to a total number of NMC = 500 Monte-Carlo (MC) realizations. Then, Failure[%]
is evaluated according to (4.52). In this figure, the effects of the bias and the uncertainty on
Failure[%] are studied separately. Firstly, in Fig. 4.4a, we consider an unbiased situation setting
b(x) = 0, and different uncertainty levels in the interval �u 2

⇥
10�3; 100

⇤
are used. The blue

curve is the average of Failure[%] over all NMC realizations, and the gray shadow represents
the standard deviation. As it was expected, by increasing �u, the average and the variance of
Failure[%] increase. This experiment is repeated in Fig. 4.4b to study the effect of the bias.
In this figure we use the previous configuration to set up the parameters, except that �u is
kept fixed to �u = 0.01, and the level of the bias is changed in the range �b 2

⇥
10�3; 100

⇤
.

As it can be seen, in average, the effect of the bias implies Failure[%] of about 10 % which
remains almost constant at this amount for �b  0.1. If the level of bias goes beyond this
value, the effect of the bias on Failure[%] becomes more significant, which means that the
suggested model for the spatial gain is not appropriate, and better methods need to be used
in order to provide the best approximation for the spatial gain. Since our proposed method
is only focused on the uncertainty of the spatial gain, henceforth we assume that a suitable
model is used for the spatial gain, and we set b(x) = 0.
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Figure 4.4: Failure [%] is a measure to compute the ratio of the sensor placement region which
is in the failure region. (a) In this figure, the effect of the uncertainty level on the Failure [%]
is depicted. Here, the bias is considered to be equal to 0. (b) The effect of bias on Failure [%]
is depicted in this figure. The variance of the uncertainty is set equal to �u = 0.01.

of spatial grid NP , we define the failure rate as :

Failure [%] , Size of the FR
Total size of the spatial grid

=
NFR

NP

. (4.52)

Fig. 4.4 illustrates the effect of uncertainty and bias on Failure[%]. In this figure, three
initial sensors are placed at XK = {0.25, 0.5, 0.75}, and we place the 4th sensor using JE .
The smoothness parameters are set as ⇢a = ⇢u = 0.2, ⇢n = 0.01, and the variances are set
�a = 0.5 and �n = 0.01. We generate Na

MC
= 10 realizations for the spatial gain, and for each

realization, we consider 50 runs for the bias, uncertainty and noise (N b

MC
= Nu

MC
= Nn

MC
=

50), leading to a total number of NMC = 500 Monte-Carlo (MC) realizations. Then, Failure[%]
is evaluated according to (4.52). In this figure, the effects of the bias and the uncertainty on
Failure[%] are studied separately. Firstly, in Fig. 4.4a, we consider an unbiased situation setting
b(x) = 0, and different uncertainty levels in the interval �u 2

⇥
10�3; 100

⇤
are used. The blue

curve is the average of Failure[%] over all NMC realizations, and the gray shadow represents
the standard deviation. As it was expected, by increasing �u, the average and the variance of
Failure[%] increase. This experiment is repeated in Fig. 4.4b to study the effect of the bias.
In this figure we use the previous configuration to set up the parameters, except that �u is
kept fixed to �u = 0.01, and the level of the bias is changed in the range �b 2

⇥
10�3; 100

⇤
.

As it can be seen, in average, the effect of the bias implies Failure[%] of about 10 % which
remains almost constant at this amount for �b  0.1. If the level of bias goes beyond this
value, the effect of the bias on Failure[%] becomes more significant, which means that the
suggested model for the spatial gain is not appropriate, and better methods need to be used
in order to provide the best approximation for the spatial gain. Since our proposed method
is only focused on the uncertainty of the spatial gain, henceforth we assume that a suitable
model is used for the spatial gain, and we set b(x) = 0.
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Figure 4.5: Effect of parameter �. The solid curves are the proposed criterion for different
�. The superscript tilde represents the normalization of the function. By increasing �, the
algorithm is more robust against FR (see the text below for more details). However, other
candidates for sensor placement which provide significant increase in the SNR can be ignored.
So, it is required to make a trade-off between reducing the risk of being in FR, and increasing
the SNR. In this figure, the parameters are set as follows : ⇢a = 0.2, ⇢u = 0.2, ⇢n = 0.1, �a =
0.15, �u = 0.15, �n = 0.5, and �s = 2, with the size of the spatial grid being equal to 300.
Starting with three initial sensors at XK = {0.05, 0.5, 0.95}, we look for the best position for
the 4th sensor.

4.4.3 Effect of � on the criterion JP

In this part, we study the effect of �, which controls ✓, on the results obtained with JP .
To do so, Fig. 4.5 is provided where the proposed criterion JP (4.43) is used as the target
function with three different values of � (0.25, 0.5, and 0.95), which are depicted with blue,
red, and green color, respectively. Moreover, �]SNR(f̂ (XM)) which is the true output SNR
normalized according to (4.51) is depicted with a dashed curve. The plots for JE(xN |XK) and
JP (xN , �|XK) are normalized such that their maximum and initial values are equal to 1 and 0,
respectively. The normalized forms are denoted by a superscript tilde. Note that the locations
of maxima for different criteria will not be changed by the normalization.

As depicted in Fig. 4.5, the proposed criterion behaves differently according to �. The larger
this parameter is, the smaller the values of the criterion within FR are. It is noticeable that
by increasing �, besides avoiding FR, it is probable to avoid some positions with significant
increase in the SNR (e.g. for x ⇡ 0.95). Consequently, high values of � should be used to avoid
locating the new sensor in FR, with the cost of achieving a smaller amount of increase in the
SNR. Otherwise, we can decrease � to keep most of the positions with a significant increase in
the SNR, but this leads to an increased risk of having large values of the criterion for positions
in FR. So, by choosing an appropriate �, we can make a trade-off between avoiding positions
in FR and keeping the regions with a high increase in the SNR.

Increasing Increasing robustness against FR

Result:
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(a) The influence of a smoothness, with � = 0.1.
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(b) The influence of smoothness ratio, with ⇢a = 0.1.

Figure 4.7: The effect of the smoothness of the spatial gain and the noise on the robustness.
(a) Here, different smoothness values of the spatial gain are considered, and the smoothness
ratio between the noise and the spatial gain is set as � = ⇢n/⇢a = 0.1. As the spatial gain gets
closer to a spatial white noise, FPR[%] increases. (b) Here, the effect of the noise smoothness
is studied. The more similar smoothness degree of the noise and the spatial gain, the larger
FPR[%] is. Compared to the spatial gain, as the noise gets closer to a white noise (decreasing
�), or smooth noise (increasing �), FPR[%] decreases.

the region where �]SNR(f̂ (XM)) is negative, and the criterion is zero. Finally, false negative
(FN) is related to the position with positive �]SNR(f̂ (XM)), and zero value for the underlying
criterion. Now, according to this region classification, and under different combinations of the
values of ⇢a and ⇢n, we calculate the false positive rate (FPR) of a criteria as follows :

FPR =
false positive

total number of negatives
=

FP

TN + FP
, (4.53)

where, the denominator is actually the size of the FR. It is noticeable that if the size of the FR
is small, although the FPR gets large, the probability of selecting a position in FR is small.
Conversely, if the size of the FR is large, although FPR gets small, the probability of selecting
a sensor in FR can be large. To avoid these two marginal cases, according to Fig. 4.4, we set
�u 2 [0.1, 0.8] which provides a moderate Failure[%] between 8% and 30%.

Fig. 4.7a is provided to show the robustness of the proposed criterion JP (xN , �|a(XK))
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• TP: true positive

• TN: true negative

• FP: false positive

• FN: false negative



Robustness

• is more robust against the uncertainty of the spatial gain 

4.4. Numerical experiments 69

10
-2

10
-1

10
0

10
1

0

20

40

60

80

100

(a) The influence of a smoothness, with � = 0.1.

10
-2

10
-1

10
0

10
1

0

20

40

60

80

100

(b) The influence of smoothness ratio, with ⇢a = 0.1.

Figure 4.7: The effect of the smoothness of the spatial gain and the noise on the robustness.
(a) Here, different smoothness values of the spatial gain are considered, and the smoothness
ratio between the noise and the spatial gain is set as � = ⇢n/⇢a = 0.1. As the spatial gain gets
closer to a spatial white noise, FPR[%] increases. (b) Here, the effect of the noise smoothness
is studied. The more similar smoothness degree of the noise and the spatial gain, the larger
FPR[%] is. Compared to the spatial gain, as the noise gets closer to a white noise (decreasing
�), or smooth noise (increasing �), FPR[%] decreases.

the region where �]SNR(f̂ (XM)) is negative, and the criterion is zero. Finally, false negative
(FN) is related to the position with positive �]SNR(f̂ (XM)), and zero value for the underlying
criterion. Now, according to this region classification, and under different combinations of the
values of ⇢a and ⇢n, we calculate the false positive rate (FPR) of a criteria as follows :

FPR =
false positive

total number of negatives
=

FP

TN + FP
, (4.53)

where, the denominator is actually the size of the FR. It is noticeable that if the size of the FR
is small, although the FPR gets large, the probability of selecting a position in FR is small.
Conversely, if the size of the FR is large, although FPR gets small, the probability of selecting
a sensor in FR can be large. To avoid these two marginal cases, according to Fig. 4.4, we set
�u 2 [0.1, 0.8] which provides a moderate Failure[%] between 8% and 30%.

Fig. 4.7a is provided to show the robustness of the proposed criterion JP (xN , �|a(XK))
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Figure 4.9: In this figure, the performance of the proposed method is compared with the prior
works by using a sequential approach. Two situations are studied in this figure : �u = 0.1 in
the first column, and �u = 0.8 in the second column. In the top, the average output SNR
is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a
low and high uncertainty levels, the proposed method provides a larger SNR, as well as more
robustness against the uncertainty. Note that in (c) and (d), JMI and JE largely overlap.

considering that 10 sensors are added, for the proposed criterion, SNR(f̂ (XM)) drops from
30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.5 Other numerical tools for performance evaluation

Previously, in Subsection 4.4.2, we discussed about FR as a notion to determine the regions
which have negative SNR caused by the uncertainty, and then, we denoted the portion of the
spatial grid within the FR by Failure[%]. Following that, in Subsection 4.4.4, we introduced
FPR as a measure to represent the robustness of a criterion against uncertainty by using the
concept of failure. We explained that one can report the robustness of a criterion against
uncertainty by counting the number of the times that the criterion suggests to put a sensor
in the FR (i.e., the probability that the criterion takes its maximum value at FR).

• Probabilistic criterion:
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Figure 4.7: The effect of the smoothness of the spatial gain and the noise on the robustness.
(a) Here, different smoothness values of the spatial gain are considered, and the smoothness
ratio between the noise and the spatial gain is set as � = ⇢n/⇢a = 0.1. As the spatial gain gets
closer to a spatial white noise, FPR[%] increases. (b) Here, the effect of the noise smoothness
is studied. The more similar smoothness degree of the noise and the spatial gain, the larger
FPR[%] is. Compared to the spatial gain, as the noise gets closer to a white noise (decreasing
�), or smooth noise (increasing �), FPR[%] decreases.

the region where �]SNR(f̂ (XM)) is negative, and the criterion is zero. Finally, false negative
(FN) is related to the position with positive �]SNR(f̂ (XM)), and zero value for the underlying
criterion. Now, according to this region classification, and under different combinations of the
values of ⇢a and ⇢n, we calculate the false positive rate (FPR) of a criteria as follows :

FPR =
false positive

total number of negatives
=

FP

TN + FP
, (4.53)

where, the denominator is actually the size of the FR. It is noticeable that if the size of the FR
is small, although the FPR gets large, the probability of selecting a position in FR is small.
Conversely, if the size of the FR is large, although FPR gets small, the probability of selecting
a sensor in FR can be large. To avoid these two marginal cases, according to Fig. 4.4, we set
�u 2 [0.1, 0.8] which provides a moderate Failure[%] between 8% and 30%.

Fig. 4.7a is provided to show the robustness of the proposed criterion JP (xN , �|a(XK))
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Figure 4.9: In this figure, the performance of the proposed method is compared with the prior
works by using a sequential approach. Two situations are studied in this figure : �u = 0.1 in
the first column, and �u = 0.8 in the second column. In the top, the average output SNR
is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a
low and high uncertainty levels, the proposed method provides a larger SNR, as well as more
robustness against the uncertainty. Note that in (c) and (d), JMI and JE largely overlap.

considering that 10 sensors are added, for the proposed criterion, SNR(f̂ (XM)) drops from
30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.5 Other numerical tools for performance evaluation

Previously, in Subsection 4.4.2, we discussed about FR as a notion to determine the regions
which have negative SNR caused by the uncertainty, and then, we denoted the portion of the
spatial grid within the FR by Failure[%]. Following that, in Subsection 4.4.4, we introduced
FPR as a measure to represent the robustness of a criterion against uncertainty by using the
concept of failure. We explained that one can report the robustness of a criterion against
uncertainty by counting the number of the times that the criterion suggests to put a sensor
in the FR (i.e., the probability that the criterion takes its maximum value at FR).

• Entropy:
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Figure 4.9: In this figure, the performance of the proposed method is compared with the prior
works by using a sequential approach. Two situations are studied in this figure : �u = 0.1 in
the first column, and �u = 0.8 in the second column. In the top, the average output SNR
is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a
low and high uncertainty levels, the proposed method provides a larger SNR, as well as more
robustness against the uncertainty. Note that in (c) and (d), JMI and JE largely overlap.

considering that 10 sensors are added, for the proposed criterion, SNR(f̂ (XM)) drops from
30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.5 Other numerical tools for performance evaluation

Previously, in Subsection 4.4.2, we discussed about FR as a notion to determine the regions
which have negative SNR caused by the uncertainty, and then, we denoted the portion of the
spatial grid within the FR by Failure[%]. Following that, in Subsection 4.4.4, we introduced
FPR as a measure to represent the robustness of a criterion against uncertainty by using the
concept of failure. We explained that one can report the robustness of a criterion against
uncertainty by counting the number of the times that the criterion suggests to put a sensor
in the FR (i.e., the probability that the criterion takes its maximum value at FR).

• Mutual information:

3.2. Mean of the SNR as a criterion for optimal sensor placement 29

Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f⇤(XM) = Cn(XM,XM)�1a(XM). (3.8)

Finally, by replacing f⇤(XM) in (3.6) the achieved output SNR is given by

SNR(f⇤(XM)) = �2
s a(XM)TCn(XM,XM)�1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X⇤

M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)�1a(XM), (3.10)

which needs to be maximized over XM such that :

X⇤
M = argmax

XM
J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f⇤(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x0) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ⇠ GP
�
ma(x), ka(x,x0)

�
, (3.12)

where ma(x) is its mean function and ka(x,x0) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
n
ã(XM)TCn(XM,XM)�1ã(XM)

o
. (3.13)• Average SNR:
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.

• Increasing Decreasing
Decreasing

Results:
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
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by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
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orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter �. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of �. It is seen that
by increasing �, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty �u, we need to set �, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of �. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as �a = 1, ⇢a = 0.1, �s = 1, �n = 1 and � = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : �u 2 {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. �SNR(f̂ (XM)) = SNR(f̂ (XM))� SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))�SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the nominator of (4.51). This experiment
is repeated for three different values of �, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty �u, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
�, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing � from 1 to 10, the average FPR becomes smaller
for different values of �u. However, the average improvement in the SNR also decreases. Going
through a more strict selection for �, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.

Trade-off between 
§ increasing the SNR 
§ reducing FPR
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Contributions

I. Criterion: Robust sensor placement for signal extraction

II. Optimization: Gradient-based algorithm with spatial regularization
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How can we improve the greedy approach?
§ Two limitations:

1. Restricting sensor location on a predefined grid

2. Suboptimal solution: greedy approach (previous sensors’ locations are not modified.)

To be more accurate: Fine grid
• High computation cost
• Multiple closely spaced sensors 

Our proposed method: a two-step method

q Step1. Greedy initialization
q Step2. Optimization: adjusting the sensor positions

§ Existing solutions e.g. branch-and-bound method:

High computational complexity High dimensions 
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Gradient-based algorithm with spatial regularization

• The average output SNR as the target function:

Spatial regularization
to avoid too close sensors

82 Chapitre 5. Gradient-based optimization approach

5.1 Proposed method

In Chapter 3 we showed that if we assume that M sensors are located at positions XM =
[x1,x2, . . . ,xM ]T , by using a linear source extractor, and having a GP assumption on the
spatial gain and the noise, then, the the mean of the SNR as a criterion to be optimized is
obtained as follows :

JE(XM) = ma(XM)TCn(XM,XM)�1ma(XM) + Tr
⇥
Cn(XM,XM)�1Ca(XM,XM)

⇤
,

(5.1)
where Ca(XM,XM) 2 RM⇥M and Cn(XM,XM) 2 RM⇥M are the covariance matrices of the
spatial gain and the noise, respectively. Moreover, ma(XM) = [ma(x1),ma(x2), . . . ,ma(xM )]T

is the set of means at locations {xi}i2{1,··· ,M}. Then, since directly maximizing (5.1) in a grid
requires a combinatorial search, leading to a high computational cost, a greedy approach has
been introduced in Chapter 3 that selects the M sensors by sequentially selecting N < M
sensors at a time. Assuming that K sensors have already been placed, to choose the locations
of the next N sensors, the following criterion is optimized :

JE(XN |XK) = E
(
⇥
a(XK)

T , a(XN )T
⇤ Cn(XK, XK) Cn(XK, XN )

Cn(XN , XK) Cn(XN , XN )

��1 a(XK)
a(XN )

� ����XK

)
.

(5.2)
However, optimizing the above function by a combinatorial search and by increasing the grid
size significantly increases the computational cost.

In this section, we present our proposed framework to solve the optimization problem for
sensor placement. Unlike the greedy approach, our proposed method directly provides the
positions of all the required number of sensors. By considering a one dimensional situation,
we want to minimize f(XM) , �JE(XM) where JE is presented in (5.1). In order to control
the average distances between each pair of the sensors, we constrain the sum of the squared
distances to be greater than a threshold. Furthermore, due to the spatial constraints of the
boundaries, we consider a normalized case where 0  xi  1 1. Therefore, we study the
following minimization problem

min
XM

f(XM) s.t.

(
kDXMk22 � ✏

0  xi  1, i 2 {1, 2, . . . ,M}
(5.3)

where D 2 R
M(M�1)

2 ⇥M is a matrix that enumerates all the possible combinations of positions
in pairs of size two. For instance, if the number of sensors is M = 3, then

DXM =

0

@
1 �1 0
1 0 �1
0 1 �1

1

A

| {z }
D

0

@
x1

x2

x3

1

A

| {z }
XM

=

0

@
x1 � x2

x1 � x3

x2 � x3

1

A.

1. Note that to keep the consistency of this chapter, in the experimental part we represent the scalars with
bold lowercase letters.
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Gradient-based algorithm with spatial regularization

to be uncorrelated with the source. Assuming that M sen-
sors are located at positions XM = {xi}i2{1,···,M}, linear
source extraction amounts to design a vector f 2 RM to esti-
mate the source as ŝ(t) = fTy(XM , t), where y(XM , t) =
[y(x1, t), . . . , y(xM , t)]T . To find the best f , a classical crite-
rion is the output signal-to-noise ratio (SNR) defined by [11]

SNR(f) = E[(fTaMs(t))2] / E[(fTnM (t))2], (2)

where aM = [a(x1), . . . , a(xM )]T denotes the vector of spa-
tial gains and nM (t) = [n(x1, t), . . . , n(xM , t)]T the vector
of noise. The spatial gain a(x) of the source of interest is
modelled as a stochastic Gaussian process to take into account
the uncertain knowledge on it:

â(x) ⇠ GP(ma(x), ka(x,x0)), (3)

where ma(x) is the mean function and ka(x,x0) is the covari-
ance function. Furthermore, we consider a zero mean Gaus-
sian process with covariance matrix kn(x,x0) to model the
noise. The criterion to optimize is then obtained as [11]:

J(XM ) = (ma
M )T (Rn

M )�1ma
M +Tr((Rn

M )�1Ra
M ), (4)

where Ra
M 2 RM⇥M and Rn

M 2 RM⇥M are the covari-
ance matrices of the spatial gain and the noise respectively,
whose (i, j)th elements are ka(xi,xj) and kn(xi,xj). Also,
mM = {ma

i }i2{1,···,M} is the set of means at locations
{xi}i2{1,···,M}, and Tr(·) is the trace operator. The optimal
sensor locations are finally obtained as

X̂M = argmax
XM

J(XM ). (5)

Directly maximizing (4) in a grid requires a combinatorial
search, which leads to a high computational cost. Therefore,
a greedy approach has been introduced in [11] that selects
the M sensors by sequentially selecting N < M sensors at
a time. Assuming that K sensors have already been placed,
to choose the locations of the next N sensors, the following
criterion is optimized:

J(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (6)

where K+N means {XN
S
XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . Once the sensor loca-
tions X̂M are obtained, the source of interest is extracted by
using the following separation vector [11]

f̂M = (Rn
M )�1ma

M . (7)

3. PROPOSED METHOD

In this section we present our proposed framework to solve
the optimization problem for sensor placement. Unlike the
greedy approach, our proposed method directly provides the
positions of all the required number of sensors. By con-
sidering a one dimensional situation, we want to minimize

f(xM ) = �J(xM ). In order to control the average distances
between each pair of the sensors, we constrain the sum of the
squared distances to be greater than a threshold. Furthermore,
due to the spatial constraints of the boundaries, we consider a
normalized case where 0  xi  1. Therefore, we study the
following minimization problem:

min
xM

f(xM ) s.t.

(
kDxk22� ✏

0  xi  1 i 2 {1, 2, . . . ,M}
, (8)

where D 2 R
M(M�1)

2 ⇥M is a matrix that enumerates all the
possible combinations of positions in pairs of size two. For
instance, if the number of sensors is M = 3, then
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To solve (8), we define an auxiliary variable zM = DxM ,
and reformulate (8) as the following problem:

min
xM ,zM

f(xM ) s.t.

8
><

>:

zM 2 A✏,

zM = DxM ,

0  xi  1 i 2 {1, . . . ,M},
(9)

where A✏ =
n
zM 2 RM

��� kzMk22� ✏
o

. To solve (9),
we use the penalty method [12], by adding the constraint
zM = DxM as a penalty to the target function with the
penalty parameter ↵:

min
xM ,zM2A✏

n
f(xM ) +

1

2↵
kzM �DxMk22

o

s.t. 0  xi  1 i 2 {1, . . . ,M}. (10)

To solve (10), we do the minimization over xM and zM al-
ternately. At iteration l, first, the cost is optimized over zM ,
fixing xM to its current estimate x(l)

M . That is:

z(l)M = argmin
zM2A✏

1

2↵
kzM �Dx(l)

M k22. (11)

The solution to the above minimization is a projection onto
the set A✏ as follows:

z(l)M =

8
<

:
Dx(l)

M , if kDx(l)
M k22� ✏

Dx(l)
M

kDx(l)
M k2

2

✏ , otherwise.
(12)

For the second step, the variable zM is fixed as in (12), and
we do the minimization over xM as follows:

x(l+1)
M = argmin

xM

n
f(xM ) +

1

2↵
kz(l)M �DxMk22

o

s.t. 0  xi  1, i 2 {1, . . . ,M}. (13)

Since the constraint is a quite simple convex set, to solve (13),
a projected gradient descent is used: after a gradient descent
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For the second step, the variable zM is fixed as in (12), and
we do the minimization over xM as follows:
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Since the constraint is a quite simple convex set, to solve (13),
a projected gradient descent is used: after a gradient descent

to be uncorrelated with the source. Assuming that M sen-
sors are located at positions XM = {xi}i2{1,···,M}, linear
source extraction amounts to design a vector f 2 RM to esti-
mate the source as ŝ(t) = fTy(XM , t), where y(XM , t) =
[y(x1, t), . . . , y(xM , t)]T . To find the best f , a classical crite-
rion is the output signal-to-noise ratio (SNR) defined by [11]

SNR(f) = E[(fTaMs(t))2] / E[(fTnM (t))2], (2)

where aM = [a(x1), . . . , a(xM )]T denotes the vector of spa-
tial gains and nM (t) = [n(x1, t), . . . , n(xM , t)]T the vector
of noise. The spatial gain a(x) of the source of interest is
modelled as a stochastic Gaussian process to take into account
the uncertain knowledge on it:

â(x) ⇠ GP(ma(x), ka(x,x0)), (3)

where ma(x) is the mean function and ka(x,x0) is the covari-
ance function. Furthermore, we consider a zero mean Gaus-
sian process with covariance matrix kn(x,x0) to model the
noise. The criterion to optimize is then obtained as [11]:

J(XM ) = (ma
M )T (Rn

M )�1ma
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M )�1Ra
M ), (4)

where Ra
M 2 RM⇥M and Rn

M 2 RM⇥M are the covari-
ance matrices of the spatial gain and the noise respectively,
whose (i, j)th elements are ka(xi,xj) and kn(xi,xj). Also,
mM = {ma

i }i2{1,···,M} is the set of means at locations
{xi}i2{1,···,M}, and Tr(·) is the trace operator. The optimal
sensor locations are finally obtained as

X̂M = argmax
XM

J(XM ). (5)

Directly maximizing (4) in a grid requires a combinatorial
search, which leads to a high computational cost. Therefore,
a greedy approach has been introduced in [11] that selects
the M sensors by sequentially selecting N < M sensors at
a time. Assuming that K sensors have already been placed,
to choose the locations of the next N sensors, the following
criterion is optimized:

J(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (6)

where K+N means {XN
S
XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . Once the sensor loca-
tions X̂M are obtained, the source of interest is extracted by
using the following separation vector [11]

f̂M = (Rn
M )�1ma

M . (7)

3. PROPOSED METHOD

In this section we present our proposed framework to solve
the optimization problem for sensor placement. Unlike the
greedy approach, our proposed method directly provides the
positions of all the required number of sensors. By con-
sidering a one dimensional situation, we want to minimize

f(xM ) = �J(xM ). In order to control the average distances
between each pair of the sensors, we constrain the sum of the
squared distances to be greater than a threshold. Furthermore,
due to the spatial constraints of the boundaries, we consider a
normalized case where 0  xi  1. Therefore, we study the
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instance, if the number of sensors is M = 3, then

Dx =

0

@
1 �1 0
1 0 �1
0 1 �1

1

A

0

@
x1

x2

x3

1

A =

0

@
x1 � x2

x1 � x3

x2 � x3

1

A .

To solve (8), we define an auxiliary variable zM = DxM ,
and reformulate (8) as the following problem:
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To solve (8), we define an auxiliary variable zM = DxM ,
and reformulate (8) as the following problem:
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the uncertain knowledge on it:

â(x) ⇠ GP(ma(x), ka(x,x0)), (3)

where ma(x) is the mean function and ka(x,x0) is the covari-
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sian process with covariance matrix kn(x,x0) to model the
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i }i2{1,···,M} is the set of means at locations
{xi}i2{1,···,M}, and Tr(·) is the trace operator. The optimal
sensor locations are finally obtained as

X̂M = argmax
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J(XM ). (5)

Directly maximizing (4) in a grid requires a combinatorial
search, which leads to a high computational cost. Therefore,
a greedy approach has been introduced in [11] that selects
the M sensors by sequentially selecting N < M sensors at
a time. Assuming that K sensors have already been placed,
to choose the locations of the next N sensors, the following
criterion is optimized:

J(XN |XK) = E[âTK+N (Rn
K+N )�1âK+N |XK ], (6)

where K+N means {XN
S
XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âTK , âTN ]T . Once the sensor loca-
tions X̂M are obtained, the source of interest is extracted by
using the following separation vector [11]

f̂M = (Rn
M )�1ma

M . (7)

3. PROPOSED METHOD

In this section we present our proposed framework to solve
the optimization problem for sensor placement. Unlike the
greedy approach, our proposed method directly provides the
positions of all the required number of sensors. By con-
sidering a one dimensional situation, we want to minimize

f(xM ) = �J(xM ). In order to control the average distances
between each pair of the sensors, we constrain the sum of the
squared distances to be greater than a threshold. Furthermore,
due to the spatial constraints of the boundaries, we consider a
normalized case where 0  xi  1. Therefore, we study the
following minimization problem:
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To solve (8), we define an auxiliary variable zM = DxM ,
and reformulate (8) as the following problem:

min
xM ,zM

f(xM ) s.t.
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(9)

where A✏ =
n
zM 2 RM
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. To solve (9),
we use the penalty method [12], by adding the constraint
zM = DxM as a penalty to the target function with the
penalty parameter ↵:
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To solve (10), we do the minimization over xM and zM al-
ternately. At iteration l, first, the cost is optimized over zM ,
fixing xM to its current estimate x(l)
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For the second step, the variable zM is fixed as in (12), and
we do the minimization over xM as follows:
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Since the constraint is a quite simple convex set, to solve (13),
a projected gradient descent is used: after a gradient descent

• Alternating minimization
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Fig. 1. Influence of the initialization. Output SNR vs. the
number of sensors. left: �a = 1, right: �a = 3.

sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be �a = 5. We also considered SNR to be
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Fig. 2. Effect of the regularization parameter ✏ to control the
sensor distances. Top: initial sensors localisation, middle and
bottom final sensors localisation for ✏ = .5 and ✏ = 1, respec-
tively.
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2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
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2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be �a = 5. We also considered SNR to be

0
5

10
15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0
5

10
15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0
5

10
15

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Fig. 2. Effect of the regularization parameter ✏ to control the
sensor distances. Top: initial sensors localisation, middle and
bottom final sensors localisation for ✏ = .5 and ✏ = 1, respec-
tively.

10-4 10-3 10-2 10-1
28

30

32

34

36

38

Greedy
Proposed (greedy initialization)

Fig. 3. Effect of the smoothness parameter of spatial gain ⇢a.

2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be �a = 5. We also considered SNR to be
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2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.

0 5 10 15 20 25
-5

0

5

10

15

20

25

30

35

40

Greedy
Proposed (regularly spaced initialization)
Proposed (greedy initialization)

0 5 10 15 20 25
-5

0

5

10

15

20

Greedy
Proposed (regularly spaced initialization)
Proposed (greedy initialization)

Fig. 1. Influence of the initialization. Output SNR vs. the
number of sensors. left: �a = 1, right: �a = 3.

sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be �a = 5. We also considered SNR to be
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2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be �a = 5. We also considered SNR to be
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2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with �a = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ✏ = 0.5 and ✏ = 1.

The second and the third sub-figures demonstrate the ef-
fect of ✏ in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (✏ = .5), and 31.53 dB
(✏ = 1), respectively. However, increasing ✏ leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ⇢a

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (⇢a). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be �a = 5. We also considered SNR to be
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2 dB to set �n. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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The mean of the noise is set to be 0. The mean of the gain is given by

ma(x) =
5X

i=1

�i sin
di(wi⇡x), (5.12)

where, �i, di and wi are the ith elements of the vectors G = [0.1, 0.3, 0.5, 0.7, 0.9], D =
[1, 1, 3, 1, 2], and W = [5, 6, 7, 8, 9], respectively. The reason that we choose (5.12) for the
mean of the spatial gain is to control the behaviour of the spatial gain in terms of the number
of local optimizer points, as well as their positions in the spatial grid. With the selected
parameters, the mean is depicted in Fig. 5.1. The smoothness parameters ⇢n and ⇢a, and
the variances �n and �a as well as the size of the spatial grid for greedy initialization take
different values for each experiment. Also, through this section, we used 50 MC realizations
of the spatial gain and the noise for different experiments. Finally, concerning the algorithm
parameters, we set ↵0 = 1, Q = 50, ⌘ = 0.5, µ0 = 1, and � = 0.5.

5.2.2 Influence of the initialization

In this part, we study the influence of the initialization on the performance of the proposed
method. We set the size of the spatial grid to be 100. Two different values of the uncertainty
on the spatial gain are considered : �a = 1 and �a = 3. The noise variance �n is accordingly set
such that the SNR becomes 0 dB. The smoothness of the uncertainty on the spatial gain (⇢a)
is set to ⇢a = 0.001, corresponding to an uncertainty with almost no spatial correlation. Since
in this experiment we want to add several sensors, we have selected a small value for ⇢a which
leads to using more sensors. The spatial smoothness of the noise ⇢n is set to ⇢n = 0.01⇢a.
By having M sensors, the number of the sensor pairs becomes M(M�1)

2 , and if we assume the
distances between each two pairs of the sensors not to be greater than 10�3, then we can set
the lower bound ✏ on kXMk22 to be ✏ = M(M�1)

2 ⇥ 10�3.
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mean of the spatial gain is to control the behaviour of the spatial gain in terms of the number
of local optimizer points, as well as their positions in the spatial grid. With the selected
parameters, the mean is depicted in Fig. 5.1. The smoothness parameters ⇢n and ⇢a, and
the variances �n and �a as well as the size of the spatial grid for greedy initialization take
different values for each experiment. Also, through this section, we used 50 MC realizations
of the spatial gain and the noise for different experiments. Finally, concerning the algorithm
parameters, we set ↵0 = 1, Q = 50, ⌘ = 0.5, µ0 = 1, and � = 0.5.

5.2.2 Influence of the initialization

In this part, we study the influence of the initialization on the performance of the proposed
method. We set the size of the spatial grid to be 100. Two different values of the uncertainty
on the spatial gain are considered : �a = 1 and �a = 3. The noise variance �n is accordingly set
such that the SNR becomes 0 dB. The smoothness of the uncertainty on the spatial gain (⇢a)
is set to ⇢a = 0.001, corresponding to an uncertainty with almost no spatial correlation. Since
in this experiment we want to add several sensors, we have selected a small value for ⇢a which
leads to using more sensors. The spatial smoothness of the noise ⇢n is set to ⇢n = 0.01⇢a.
By having M sensors, the number of the sensor pairs becomes M(M�1)

2 , and if we assume the
distances between each two pairs of the sensors not to be greater than 10�3, then we can set
the lower bound ✏ on kXMk22 to be ✏ = M(M�1)

2 ⇥ 10�3.
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Figure 5.1: The mean of the spatial gain ma(x).

from GP
�
m(x), C(x,x0)

�
, with a square exponential covariance function

C(x,x0) = �2 exp
�(x�x0)2

2⇢2 .

The mean of the noise is set to be 0. The mean of the gain is given by

ma(x) =
5X

i=1

�i sin
di(wi⇡x), (5.12)

where, �i, di and wi are the ith elements of the vectors G = [0.1, 0.3, 0.5, 0.7, 0.9], D =
[1, 1, 3, 1, 2], and W = [5, 6, 7, 8, 9], respectively. The reason that we choose (5.12) for the
mean of the spatial gain is to control the behaviour of the spatial gain in terms of the number
of local optimizer points, as well as their positions in the spatial grid. With the selected
parameters, the mean is depicted in Fig. 5.1. The smoothness parameters ⇢n and ⇢a, and
the variances �n and �a as well as the size of the spatial grid for greedy initialization take
different values for each experiment. Also, through this section, we used 50 MC realizations
of the spatial gain and the noise for different experiments. Finally, concerning the algorithm
parameters, we set ↵0 = 1, Q = 50, ⌘ = 0.5, µ0 = 1, and � = 0.5.

5.2.2 Influence of the initialization

In this part, we study the influence of the initialization on the performance of the proposed
method. We set the size of the spatial grid to be 100. Two different values of the uncertainty
on the spatial gain are considered : �a = 1 and �a = 3. The noise variance �n is accordingly set
such that the SNR becomes 0 dB. The smoothness of the uncertainty on the spatial gain (⇢a)
is set to ⇢a = 0.001, corresponding to an uncertainty with almost no spatial correlation. Since
in this experiment we want to add several sensors, we have selected a small value for ⇢a which
leads to using more sensors. The spatial smoothness of the noise ⇢n is set to ⇢n = 0.01⇢a.
By having M sensors, the number of the sensor pairs becomes M(M�1)

2 , and if we assume the
distances between each two pairs of the sensors not to be greater than 10�3, then we can set
the lower bound ✏ on kXMk22 to be ✏ = M(M�1)

2 ⇥ 10�3.

Result: Increasing Increasing the average distance between the sensors
(with a slightly decrease of the output SNR)
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Figure 5.3: Effect of the regularization parameter ✏ to control the sensor distances. Top :
initial sensors localisation, middle and bottom : final sensors localisation for ✏ = .5 and ✏ = 1,
respectively.

considering �a = 1 in Fig. 5.2-a, and by adding 3 sensors, the greedy method improves the SNR
up to 17dB while this amount is 24dB for the proposed method (with greedy initialization),
which is 7dB better than the greedy method. Indeed, this result is expected since the proposed
method tackles the optimization of the sensor locations all at the same time instead of one
after the other as in the greedy method. It is also worth noting that the output SNR is worse
by applying the proposed method with a regularly-spaced initialization than by just choosing
the sensor locations by the greedy method with no additional adjustment. This can be due
to the fact that our problem is non-convex, and as such, by having a bad initialization, the
gradient-based approach can converge to a bad local minimum.

5.2.3 Regularizing sensors distances

Figure 5.3 shows the effect of regularizing sensor distances and how it can help to control
the average distances between pairs of sensors. In this part, all the parameters are set as in
the previous section with �a = 1, except that here we consider a tighter grid of size 320. Also,
the number of desired sensors is set to be M = 15. For the proposed method, two different
values for the lower bound are considered : ✏ = 0.5 and ✏ = 1. We note that we intentionally
choose the parameters such that we have most of the information between 0 < x < 0.2 and
the positions of the sensors suggested by the algorithm not being so scattered in the space.
In this way, we can better visualize and compare the effect of ✏ in controlling the distances
between the sensors. In Fig. 5.3 we can see that the sensors are located in three clusters, one
cluster is the range x 2 [0.01, 0.03], the second one is in x 2 [0.08, 0.1], and the third one is in
x 2 [0.15, 0.17].
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Results:

• Proposed optimization algorithm improves the SNR compared to the greedy approach.

• Greedy initialization: higher SNR than regularly-spaced initialization
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• Problem of optimal sensor placement

• Limited number of sensors

• Source signal extraction 

Problem statement

• Measurements: linear instantaneous model 

• Targeting the signal to noise ratio (SNR)

• Linear source extraction & GP assumption

Criterion II: 

4.2. Proposed criterion 55

Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓, and we introduce the criterion JP (XM, ✓)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.22)

where Gw(·) denotes the cdf of the SNR/�2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

Q
M

i=1 di
⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.23)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2
(
p

�1,
p
v1), (4.24)

where �i and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, ✓), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter ✓ can be used to control
the risk we want to take when placing new sensors. The effect of ✓ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter ✓ is set to a value equal to 10. In the second case, we
reduced the parameter ✓ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter ✓. From
this figure, we can see that by increasing ✓ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter ✓ to a sufficiently low

Algorithm I: Sequential approachCriterion I:

2 Mathematical-notation

SNR(̂f(XM)) =
Et

h�̂
f(XM)Ta

⇤(XM)s(t)
�2i

Et

h�̂
f(XM)Tn(XM, t)

�2i . (11)

SNR(f⇤(XM)) =
Et

h�
f
⇤(XM)Ta

⇤(XM)s(t)
�2i

Et

h�
f
⇤(XM)Tn(XM, t)

�2i . (12)

max
⇥
�ŜNR(f̂(XM))

⇤
= 1

�ŜNR(f̂(XK)) = 0

SNR(f̂(XK))

SNR(f̂(XN ))

SNR(f̂(XM))

XK = [x1, x2, . . . , xK ]

XN = [xK+1, xK+2, . . . , xK+N ]

JE(XM) = E
n

w(XM)
o

Algorithm II: Gradient-based approach

Contributions
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• Probabilistic criterion

• Distribution of the SNR

• Robust against the spatial gain uncertainty

• Trade-off: robustness & SNR improvement

Criterion II: 

• Initialization with greedy approach 

• Adjusting all sensors’ locations at once

• Continuous space optimization

• Spatial constraint to control sensors’ distances

Algorithm II: Gradient-based optimization

• Targeting the average SNR

• Closed-form expression

• Superiority to the classical kriging

Criterion I:

• Discrete optimization (combinatorial search)

• Sequentially adding the new 𝑁 < 𝑀 sensors

• Updating the estimation of the spatial gain

Algorithm I: Greedy & sequential approaches
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• Multiple source extraction: BSS techniques

• Trade-off between the SNR improvement and the complexity: Akaike information criterion

• Dynamic design e.g. real-time applications, mobile source

• Acoustic signals: convolutive mixture model

• Noise uncertainty: 

ü pdf of the SNR based on the pdf of the spatial gain and the noise: (Wishart distribution)

• Estimation of the GP parameters: Bayesian inference 

• Test the proposed methods in 2-D and 3-D settings 

Short-term

Long-term



Thank you


