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Mathematical notations and tools

To keep the consistency of the notation throughout the thesis, some of the common ma-
thematical notations are explained here.

The M ×M identity matrix is denoted by IM . Considering the elements of the identity
matrix to be Iij , then, Iij = 1 if i = j, otherwise, Iij = 0. Whenever the dimensions of the
identity matrix are not concerned, it is simply denoted by I.

Vectors are denoted by lower case bold letters such as x, and all vectors are assumed to
be column vectors. Uppercase bold letters, such as X, denote matrices. The ith element of a
vector is indicated by lowercase, subscript-i e.g. xi, and the (i, j)th element of a matrix is
represented by uppercase, subscript-ij e.g. Xij . The superscript [.]T denotes the transpose of
a matrix or vector, so that xT is a row vector. The notation [x1, . . . , xM ] denotes a row vector
with M elements, and the corresponding column vector is x = [x1, ..., xM ]T .

We use typeface serif to denote deterministic variables. Also, random variables are written
in italicized typeface sans serif. The realisations of the random variables are the same as random
variables except that they are not italicized. The notations are summarized in the following
table :

Definition Notation Example
deterministic, scalar lowercase, serif x

deterministic, vector lowercase, bold, serif x
deterministic, matrix uppercase, bold, serif X

random variable, scalar lowercase, italic, sans serif x
random variable, vector lowercase, bold, italic, sans serif x
random variable, matrix uppercase, bold, italic, sans serif X

random variable realization, scalar lowercase, sans serif x
random variable realization, vector lowercase, sans bold, serif x
random variable realization, matrix uppercase, sans bold, serif X

Table 1: Table of notations.

The expectation of a function f(x (1), x (2), . . . , x (K)) with respect to a random variable x (i)

where i ∈ {1, 2, . . . ,K}, is denoted by Ex(i)

{
f(x (1), x (2), . . . , x (K))

}
. If the distribution of a

random variable X is conditioned on another variable Z , then, the conditional expectation of
the function f(X ) with respect to X will be written as EX |Z {f(X )}. Also, the variance of
a function f(x) is denoted by var[f(x)], and the covariance for two vector variables x and y
is denoted and defined as cov[x , y ] = E[(x − E[x ])(y − E[y ])T ]. Moreover, for simplicity, we
denote cov[x , x ] as cov[x ].

1





Chapitre 1

Introduction

Sommaire
1.1 A preface to optimal sensor placement for signal extraction . . . . . 3
1.2 Challenges and contributions . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Optimal sensor placement plays an important role in a variety of domains, such as indus-
try, medicine, wireless communications, aerospace, biomedical engineering, civil engineering,
environmental studies, and robotics. In such applications, one is usually dealing with data
acquisition for the purpose of monitoring a spatial phenomenon. Due to price, energy or ergo-
nomic constraints (e.g. when the structure is the human body), the number of sensors is often
limited. Therefore, an important task is to find the best spatial positions to install the sensors,
such that the maximum information can be collected to provide the best estimation of the
phenomenon. This problem corresponds to optimal sensor placement and it is faced in a great
number of applications ranging from infrastructure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ;
[MZ05] and robotics [CL04] to biomedical signal processing [Her+00] ; [SJ+18] ; [VJV04],
among the large variety of examples. Note that most of the time, the sensor recordings not
only contain the information about the desired phenomenon, but also a mixture of several
phenomena among which, only one is of interest.

This thesis focuses on the optimal sensor placement problem with the purpose of signal
extraction in a noisy setting. Since we focus on the best estimation of an underlying signal,
our proposed approaches are focused on the maximization of the output signal-to-noise ratio
(SNR) of the estimated signal.

In this chapter, we first discuss about the concept of optimal sensors placement for source
extraction. Then, the challenges that we want to address in this thesis as well as the cor-
responding contributions will be briefly mentioned. Finally, we will have an overview of the
thesis.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system (e.g. a

3



4 Chapitre 1. Introduction

radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x ∈ X ⊆ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
(
n(xi, t0), n(xj , t0)

)
=

Ex

{
[n(xi, t0)−mn(xi, t0)] . [n(xj , t0)−mn(xj , t0)]

}

√
Ex
{
n(xi, t0)2

}
−mn(xi, t0)2.

√
Ex
{
n(xj , t0)2

}
−mn(xj , t0)2

6= 0,

where mn(xi, t0) = Ex
{
n(xi, t0)

}
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
(
n(x, ti), n(x, tj)

)
=

Et
{

[n(x, ti)−mn(x, ti)] . [n(x, tj)−mn(x, tj)]
}

√
Et
{
n(x, ti)2

}
−mn(x, ti)2 .

√
Et
{
n(x, tj)2

}
−mn(x, tj)2

= 0,

where mn(x, ti) = Et
{
n(x, ti)

}
is the temporal mean of the noise at time ti.

We note that for many electrical signals, we can assume that the propagation is very fast
(with respect to the distances between sensors and sources), so the quasi-static approximation
of Maxwell law applies and we can neglect the propagation times. It is the case for ECG, EEG,
MEG signals, and we can use the time-invariant linear instantaneous model in (1.1). However,
it is no longer true for acoustical signals where we have to take into account the propagation
delay, and more generally the filtering between sensors and sources. Thus, the following linear
convolutive mixture model should be used to represent the sensor measurements :

y(x, t) = a(x, t) ∗ s(t) + n(x, t). (1.2)

The main situation we considered in this thesis is fetal ECG for which the linear instantaneous
model is relevant. This would be also the case for EEG or MEG signals. If we consider PCG
or audio sources, it is no longer the case, and extension to a model where a(x, t) is a filter
becomes mandatory.

Let’s consider XX = [x1,x2, . . . ,xP ]T ∈ RP×D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} ∈ RP . Now, consider the set of positions
XM ∈ RM×D as a subset of XX , to be selected positions for sensor placement where M ⊂
X is the set of indexes corresponding to the selected positions with the size |M| = M .
Then, the set of noisy measurements related to each sensor can be denoted by the vector



1.1. A preface to optimal sensor placement for signal extraction 5
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fT y(XK , t) = fT a(XK)s(t) + fT n(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fT aKs(t))
2
] / E[(fT nK(t))

2
], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (fT aKaT

Kf) / (fT Rn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)

�1
aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aT

K(Rn
K)
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aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aT
M (Rn

M )
�1

aM (6)

is maximum: X⇤
M = arg maxXM

J(XM ).
A difficulty arises from this scheme: the optimal extrac-

tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âT
M (Rn

M )
�1

âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to
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M ), (9)

where Ra
M 2 RM⇥M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = arg max
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âT
K+N (Rn

K+N )
�1

âK+N |XK ], (11)

where K +N means {XN

S
XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âT
K , âT

N ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k2{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fT y(XK , t) = fT a(XK)s(t) + fT n(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fT aKs(t))
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] / E[(fT nK(t))
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], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (fT aKaT

Kf) / (fT Rn
Kf). Maximizing it to

express the best extraction vector f⇤ leads to1

f⇤ = (Rn
K)
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aK , (4)

and the achieved output SNR is given by

SNR(f⇤) = �2
S aT

K(Rn
K)
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aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X⇤

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aT
M (Rn

M )
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aM (6)

is maximum: X⇤
M = arg maxXM

J(XM ).
A difficulty arises from this scheme: the optimal extrac-

tion vector f⇤M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x0) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x0)), (7)

where ma(x) is the mean function and ka(x,x0) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
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element is ka(xi,xj) and Tr(·) is the trace operator. The op-
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X̂M = arg max
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Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as
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y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD, consider that a source signal
s(t) is propagated through an space described by a(x) as the spatial gain between the source
s(t) and the sensor. Also, the corresponding spatially correlated/time uncorrelated additive
noise n(x, t) is considered. Then, the noisy measurement is related to the source signal s(t) as
follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM , t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that all signals are
supposed to be real values. We also denote n(XM , t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and
a(XM ) = [a(x1), a(x2), . . . , a(xM )]T the corresponding noise and spatial gain vectors, respec-
tively. One can then write the measurement model (1.1) in a more compact form as follows :

y(XM , t) = a(XM )s(t) + n(XM , t). (1.2)

Fig. ?? is provided in order to better understand and comprehend the above model.

Under this setting, we can be interested either in (i) characterizing the source signal, or
(ii) the structure, or even (iii) the resulting field of signals in some regions of the structure. In
all these cases, signals are recorded by multiple sensors located at different positions within
or on the structure. Due to price, energy or ergonomic constraints (e.g. when the structure is
the human body), the number of sensors is often limited and it becomes crucial to place a few
sensors at positions which contain the maximum information. This problem corresponds to
optimal sensor placement and it is faced in a great number of applications ranging from infra-
structure monitoring [Ber+05] ; [Kra+08] ; [Dan91] ; [MZ05] and robotics [CL04] to biomedical
signal processing [Her+00] ; [SJ+18].

The way to tackle the problem of optimal sensor placement differs from one application to
another, it mainly depends on which of three aspects mentioned above we want to focus on.
In this paper, we study this problem aiming at the first aspect, that is, to extract a source
signal from a set of noisy measurements collected from a limited number of sensors.

This work can be seen as a different twist on optimal sensor placement using Kriging (spa-
tial Gaussian processes), here we focus on reducing the uncertainty on the signal source to be
extracted. This differs from the classical Kriging-based methods [SW87a] ; [Cre90] ; [KSG08],
since these methods focus on reducing the uncertainty directly on the spatial phenomenon,
which would correspond to reconstruct the gain and not the signal itself. In the classical Kri-
ging approach, sensor locations are selected according to criteria such as entropy [SW87a] ;
[Cre90] or mutual information [KSG08] on the gain, while in our case the criterion is the
average SNR of the signal itself.

Our work can also be seen as a problem of optimal source extraction, thus being related
to the domain of source separation [CJ10]. We are here interested in extracting only a single
source signal from a linear mixture with many other sources assuming the following : 1)
prior information on the spatial gain of the target source is available ; 2) the effect of the
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radiator) produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
where D denotes the spatial dimension, consider that the source signal s(t) is attenuated
through the space described by a(x) as the spatial gain between the source and the sensor.
Then, the noisy measurement is related to the source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise. Spa-
tially correlated noise means that, at an instant t = t0, for any pair of positions xi and xj the
following correlation is non-zero :

Corr
�
n(xi, t0), n(xj , t0)

�
=

Ex

⇢
[n(xi, t0)�mn(xi)] . [n(xj , t0)�mn(xj)]

�

q
Ex

�
n(xi, t0)2

 
�mn(xi)2 .

q
Ex

�
n(xj , t0)2

 
�mn(xj)2

6= 0,

where mn(xi, t0) = Ex
�
n(xi, t0)

 
is the spatial mean of the noise at position xi. Also, time

uncorrelated noise means that the correlation between two time instances of the noise is equal
to zero :

Corr
�
n(x, ti), n(x, tj)

�
=

Et

⇢
[n(x, ti)�mn(ti)] . [n(x, tj)�mn(tj)]

�

q
Et

�
n(x, ti)2

 
�mn(ti)2 .

q
Et

�
n(x, tj)2

 
�mn(tj)2

= 0,

where mn(x, ti) = Et

�
n(x, ti)

 
is the temporal mean of the noise at time ti.

Let’s consider XX = [x1,x2, . . . ,xP ]T 2 RP⇥D to be candidates for sensor placement
with corresponding index set X = {1, 2, . . . , P} 2 RP . Now, we set the set of positions
XM = [�xi�]Ti2X 2 RM⇥D to be selected positions for sensor placement where M ⇢ X
is the set of indexes corresponding to the selected positions with the size |M| = M .
Then the set of noisy measurements related to each sensor can be denoted by the vec-
tor y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note
that in this thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (1.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted a(x). Other signal sources,
e.g. the maternal ECG signal, are thought-out as the environmental additive noise signals.
Now, let’s consider that the attenuated fetal ECG is expanded on the maternal skin surface

Sensor

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) through a spatial gain (e.g. maternal abdominal tissues). Other source signals such
as maternal ECG are considered as the environmental additive noise.

y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T . Note that in this thesis, all signals are considered
to be real-valued. We also define n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) =

[a(x1), a(x2), . . . , a(xM )]T as the corresponding noise and spatial gain vectors, respectively.
One can then write the measurement model (1.1) for the set of sensors XM in a general
compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.3)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand
the above model. In this example, the fetal electrocardiogram (ECG) is the source signal s(t).
This source signal is attenuated through the maternal abdominal tissues, and the spatial gain
between the fetal heart and the sensor located in x is denoted by a(x). Other signal sources,
e.g. the maternal ECG signal, are considered as the environmental additive noise signals.
Now, let’s assume that the attenuated fetal ECG is expanded on the maternal skin surface
according to the color-map shown in Fig. 1.1. By installing M sensors at different positions
on the maternal skin surface, we have a set of noisy measurements according to (1.3).

Under the above setting, we can be interested in three different topics to be studied :

I) Characterizing the source signal s(t) : Here, the main purpose is focused on ex-
tracting the source signal s(t) from the set of measurements y(XM, t) collected by the
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sensors. For instance, in the example of the pregnant woman, we are interested in the
extraction of the fetal ECG signal. So, the best set of sensor positions are the positions
that provide an estimate of s(t) as accurate as possible.

II) Characterizing the structure a(x) : Finding a proper model for the spatial gain a(x)

is another aspect that can be studied using the signal y(XM, t) collected by the sensors.
Here, we try to answer this question : using the measurements collected by the sensors,
how can we estimate the value of the spatial gain everywhere in the region of interest ?
The spatial characteristics of the maternal abdominal tissues are a good example of this
subject. So, in this case, the optimal sensor positions are the positions that contain the
maximum information to better find a suitable model for the abdominal tissues.

III) Characterizing the resulting field of signals in the structure y(x, t) : Here, we
are interested in interpolating the attenuated signal through the spatial gain. In other
words, we want to interpolate the values of the attenuated signal y(x, t) at all positions
in the region of interest by having a few measurements of the attenuated signal at the
sensor positions y(XM, t). Therefore, from this point of view, the best sensor positions
are the positions that contain the maximum information about the attenuated source
signal in the structure.

The above three problems are different, and as such, the optimal locations of sensors
could be different for each problem. In all these cases, signals are recorded by multiple sensors
located at different positions on the structure. The way to tackle the problem of optimal sensor
placement differs from one application to another, and it mainly depends on which of three
aspects mentioned above we want to focus on. It is important to note that choosing a set of
positions for sensor placement may provide useful information concerning one of the above
aspects, e.g. the source signal. However, this set of measurements may not necessarily contain
suitable information about the other aspects, such as estimation of the spatial gain model.
So, depending on our main goal, different criteria should be adopted to solve the problem of
optimal sensor placement.

In this thesis, we want to accurately estimate the source signal, s(t), from a set ofM noisy
measurements, y(XM, t), with a limited number M of sensors. To do so, we propose new
criteria based on the output SNR on ŝ(t), the estimation of the source s(t). Here, our work
differs from the classical kriging-based methods [SW87a] ; [Cre90] ; [KSG08], as they focus
on reconstructing the spatial gain and not the signal itself. In the classical kriging approach,
sensor locations are selected according to criteria such as entropy [SW87a] ; [Cre90] or mutual
information [KSG08] ; [VJV04] ; [Sam06] on the spatial gain, while in our proposed criteria we
mainly focus on the output SNR of the source signal itself.

Fig. 1.2 schematically presents the differences between the kriging approach and our me-
thod. As can be seen in Fig. 1.2a, in our proposed approach we directly focus on our goal which
is the extraction of the source signal, and the sensor positions XM are selected according to
this aim. Meanwhile, from Fig. 1.2b, we see that the main focus of the kriging approaches is
on the best estimation of the spatial gain from noisy measurements, and it does not directly
consider the best estimation of the source signal. In other words, the classical kriging approach
consists of two steps : 1) the positions are selected such that we achieve the best estimation of
the spatial gain, and 2) a source extraction method is used to extract the desired source signal
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fT y(XK , t) = fT a(XK)s(t) + fT n(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fT aKs(t))
2
] / E[(fT nK(t))

2
], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (fT aKaT

Kf) / (fT Rn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)

�1
aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aT

K(Rn
K)

�1
aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aT
M (Rn

M )
�1

aM (6)

is maximum: X�
M = arg maxXM

J(XM ).
A difficulty arises from this scheme: the optimal extrac-

tion vector f�
M (4) needs a perfect knowledge of the spatial

gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âT
M (Rn
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âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to
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M + Tr((Rn

M )
�1

Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = arg max
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥ D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âT
K+N (Rn

K+N )
�1

âK+N |XK ], (11)

where K +N means {XN
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mean (11) means that âK and the upper diagonal block of
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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However, directly maximizing (9) can lead to a high com-
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consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
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where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
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kernel function kn(x,x�) [13] that has been estimated almost
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the source of interest is imperfectly known and is modelled as
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However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âT
M (Rn

M )
�1

âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )

T
(Rn

M )
�1

ma
M + Tr((Rn

M )
�1

Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = arg max
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âT
K+N (Rn

K+N )
�1

âK+N |XK ], (11)

where K +N means {XN

S
XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âT
K , âT

N ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

â(XM) In Fig. 1.1 we illustrate an example of a pregnant woman in order to better
understand the above model. In this example, the fetal heart signal which can be considered
to be recorded in the form of electrocardiogram (ECG) is the source signal s(t). The fetal

(b) Kriging approach.

Figure 1.2: Comparison between the kriging and the proposed sensor selection scheme for
source extraction. Top : our proposed approach selects sensor positions according to the best
extraction of the source signal. Bottom : the classical kriging approaches, select sensor positions
according to the best extraction of the spatial gain, and then, a source extraction method is
used to recover the source signal from the measurements recorded by the sensors.

from the recordings of the already located sensors. In contrast, in our suggested method, these
two steps are combined, i.e. the selection of the sensor locations and the extraction of the
source signal are done together based on a criterion for estimating the best source signal.

It is very important to emphasize that in many works on this topic such as in [VJV04],
it is assumed that we have recorded some signals using a set of sensors, and then, some of
the measurements are selected to be processed for a certain purpose. However, in this
thesis our idea is totally different. Here, from the beginning and before recording, we want
to predict where to put the sensors. This assumes that we do not have access to the
signal before the prediction. To better understand the difference between these two cases, we
give an example. Consider the example of the pregnant woman in Fig. 1.1, where the aim is
to extract the fetal ECG signal. Here, we can design the experiment for source extraction in
two different ways : 1) we can use a belt filled with several sensors, and we record the signals
in a full spatial grid on the maternal skin surface. Then, according to the recorded signals,
we propose an algorithm to select the information of M sensors among the total sensors to
be processed for source extraction. 2) instead of using a belt containing a lot of sensors, from
the beginning, we design an algorithm to predict the optimal positions for M sensors, and the
decision of the sensor placement is done without using a lot of observations recorded by a set
of sensors. In this thesis, we focus on the second approach.

Here, we also mention that in the framework presented in this thesis, we assume that a(x)
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is not fully known, either because we have measured it only in a few positions, or because
the available prior information on it is vague. To model this uncertainty, we take a Bayesian
perspective and we assume that a(x) is a realization of a Gaussian process (GP). Such un-
certainty modeling approach has been extensively used in function interpolation, where it is
named kriging [Kri51] ; [Cre90], in the design of computer experiments [SWN13] and in global
optimization [JSW98]. It has also been used for sensor placement in [KSG08], where the in-
crement of the mutual information (MI) is proposed as a placement criterion. In [KSG08], the
increment in MI is maximized using a near-optimal greedy approach. New sensors are added
one by one starting from an empty set, in such a way that, at each iteration, the selected
location adds maximum information.

It is also interesting to notice that our work can be seen as a problem of optimal source
extraction, thus being related to the domain of source separation [CJ10b]. Source separation
is a well-known problem attempting to separate different sources from a set of noisy measure-
ments. These measurements are a mixture of the different source signals which are recorded
by a set of sensors. If the number of sensors is larger than or equal to the number of sources
to be retrieved, and assuming noiseless recordings, we are in an over-determined case. In this
situation, there exist equivariant source separation methods [Car98]. These methods state that
in a (over-)determined condition, the quality of the source retrieval is independent of the spa-
tial gains and thus independent of the sensor positions. This property justifies why previous
studies focused on providing the best algorithms to recover the sources but were not interested
in choosing the best sensor locations. In the problem we study in this thesis, since the noise
spatial correlation matrix is always full rank, the number of underlying sources composing the
noise is always greater than the number of sensors. Therefore, such nice equivariance property
is lost and the performance may be dependent on the gain a(x) and on the noise, making the
choice of sensor locations of great concern. Note that here, we are interested in extracting only
a single source signal from a linear mixture with many other sources. So, in our model, we
consider all the other sources as an additive noise to the desired source signal. We also stress
that in our work, we do not focus on proposing a new algorithm for source extraction itself,
but on choosing the sensor positions such that we obtain the best extraction performance with
a given source estimator.

1.2 Challenges and contributions

In the concept of optimal sensor placement, the classical approaches focus on interpolating
a field of signals, e.g. room temperature [KSG08]. As any other kriging-based criterion for
interpolation [SW87b] ; [Sac+89], this approach could be used in our setting if our aim was to
achieve the second and the third goals we mentioned in the previous section, i.e. characterizing
the structure of the spatial gain a(x), or characterizing the resulting field of signals in the
structure y(x, t). But as previously stated, this is not our aim, and our goal may not be
equivalent to these two goals. Therefore, in this study, we want to choose the sensor locations
so that the estimation of a source signal of interest from the recordings leads to the best
estimation in the signal-to-noise ratio (SNR) sense.
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To achieve this goal, by considering a GP model for a(x) and n(x, t), and using a linear
source extraction approach, we derive the output signal-to-noise-ratio (SNR) of the estimated
source signal as a function of a(x) and of the sensor locations XM. Since a(x) is stochastic,
the SNR is stochastic, too. So, based on the probability density function of the SNR, we derive
new criteria that are optimized by a grid search using a greedy approach.

The last challenge that we address in this thesis is about the limitations of the greedy
approach for the sensor placement problem. In the greedy approach, the sensors are added
one by one from a fixed grid of candidate sensor positions. However, two limitations can be
observed in this approach : first, the sensor locations are restricted to be on a predefined grid,
and second, the greedy approach is sub-optimal. Consequently, to have a good performance,
the grid should be fine enough, leading to a high computation cost. To overcome these issues, in
this thesis we will present a gradient-based optimization approach to improve the optimization
algorithm for optimal sensor placement. We propose a first order optimization-based approach
that in contrast to the one-by-one strategy adopted by the greedy method on a grid, optimizes
all the sensor positions at once, and does not discretize the search space. On the other hand,
since placing two sensors very close to each other may not be feasible, e.g., due to the physical
size of the sensors, a regularization term is added to avoid choosing too close sensor positions.

1.3 Overview of the thesis

As mentioned above, the problem of optimal sensor placement for source extraction
concerns several challenges which are already discussed along with our main contributions.
In the following, we will have a brief overview of the next chapters.

— Chapter 2. State of the art

To continue this manuscript, we first begin with a description of the classical kriging-
based criteria for interpolation. To do so, Chapter 2 contains a brief description of the
kriging-based alternative criteria for sensor placement presented in the literature. This
chapter is mostly focused on the criteria that use the concepts of mutual information
(MI) and entropy. In this chapter, the greedy approach which is a common method for
sensor placement will be explained, too.

— Chapter 3. Average signal to noise ratio as a criterion for optimal sensor placement

This chapter details our first proposed method to choose the best sensor locations for
source extraction. Our first contribution is a basic method based on the average output
SNR of the linearly extracted signal as a quality criterion to select sensor locations. Such
a criterion includes the uncertainty on the spatial gain of the source to be extracted,
providing a suitable solution for the optimal sensor placement problem. In this chapter,
we will also present numerical simulations to show the superior efficiency and accuracy
of the proposed method in the source extraction problem compared to the classical
sensor placement criteria such as entropy and mutual information. At the end of this
chapter, we will discuss about the challenges of the first proposed method.
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— Chapter 4. Robust sensor placement for signal extraction

The fourth chapter is dedicated to our second contribution which is an improved version
of the first method to provide a robust algorithm for sensor placement. Since the SNR
is uncertain in this context, to achieve a robust signal extraction, we propose a new
placement criterion based on the maximization of the probability that the SNR exceeds
a given threshold. Here, we will see that our first proposed method, which targets the
average SNR, can be seen as a special case of the new robust criterion. In this chapter,
to reduce the computational cost of evaluating the criterion, we will also propose a
sequential approach where new sensor locations are chosen in batches. Then, in the
next part, we provide several numerical results to show a consistent superiority of the
proposed criterion compared with the classical kriging and the average SNR criteria
in terms of the output SNR and robustness against the uncertainty on the model of
spatial gain. In the end, we will mention some of the challenges regarding the proposed
method.

— Chapter 5. Gradient-based optimization approach for optimal sensor placement

In Chapter 5, we present a new optimization approach to solve the optimal sensor pla-
cement problem. Unlike the greedy approach, our new optimization method locates all
the sensors at once. Thanks to a constraint that we add to the problem, our proposed
algorithm is able to control the average distances between the sensors. To solve our
constrained problem, we use an alternating optimization penalty method. We apply
this optimization method to our first criterion presented in Chapter 3. As this criterion
is non-convex, the proposed algorithm should be carefully initialized. For this pur-
pose, we propose to initialize it with the result of the greedy method. After presenting
the proposed method, we present experimental results to show the superiority of the
proposed method over the greedy approach.

— Chapter 6. Conclusions and perspectives

In the last chapter, we summarize the work presented in this manuscript. We also
discuss about the perspectives and open problems related to this work.
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In this chapter, we review classical methods for optimal sensor placement. To this end,
first, we will talk about Gaussian Processes (GP) as a useful tool for statistical modeling.
Then, we will review the kriging approach as a classical interpolation method which is based
on GP assumption on an underlying physical phenomenon. Next, optimal design will be pre-
sented as a model-based approach which is unbiased with low variance. In this part, we will
discuss different criteria relying on the variance of an estimator. In this regard, the concepts
of maximum likelihood and Fisher information will be explained, and then, linear estimator
will be discussed. Finally, we explain the Bayesian version of the experimental design with two
specific cases : entropy and mutual information (MI).

2.1 Gaussian Processes (GP) and kriging

In this section, we talk about the kriging approach which is a classical technique to inter-
polate the values of an underlying signal based on some observations. The kriging approach is
usually based on GP and benefits from its properties obtained from the normal distribution.
So, in the following, first, we will talk about GP, and then, we continue with reviewing the
kriging technique.

11
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2.1.1 Gaussian Processes

Consider a to be a one-dimensional random variable. If a follows a normal distribution,
the probability density function (pdf) of this random variable is denoted as follows :

a ∼ N
(
ma, σ2

a

)
, (2.1)

where ma = E{a} is the mean and σ2
a = E

{
(a − ma)2

}
> 0 is the variance which parame-

terizes the distribution. The above one-dimensional normal distribution is also known as the
univariate normal distribution, whose pdf is defined as follows :

pA
(
a
)

=
1

σa
√

2π
exp−

1
2

(
a−ma
σa

)2
. (2.2)

Joint Gaussian distribution, also known as multivariate normal distribution (MVN), is a
general form of the univariate normal distribution defined for a random vector which consists
of a set of random variables. If we consider a = [a1, a2, . . . , aP ]T to be a set of random
variables, then their multivariate normal distribution is denoted as :

a ∼MVN
(
ma,Ca

)
, (2.3)

where ma is the mean vector as follows :

ma ,




E{a1}
E{a2}

...
E{aP }


 =




ma1

ma2
...

maP


 , (2.4)

and Ca is the covariance matrix :

Ca , E
{

(a −ma)(a −ma)T
}

= E
{
a aT

}
−mamaT . (2.5)

Considering the above mean vector and covariance matrix, the pdf of the multivariate normal
distribution is :

pA

(
a
)

=
1

(2π)P/2|Ca|1/2 e−
1
2

(a−ma)T [Ca]−1(a−ma). (2.6)

Now, assume that the random variable a(x) is a function of another variable, e.g. space x ∈
XP , where XP ∈ RP×D is considered to be the discrete spatial grid of size P in dimension D,
which can be equal to 1, 2, or 3. If for any subset of the space XM ⊂ XP with size |XM| = M ,
the set of random variables a(XM) = [a(x1), a(x2), . . . , a(xM )]T has a multivariate normal
distribution, then the random variable a(x) is said to be a GP [RW06] :

a(x) ∼ GP
(
ma(x), Ca(x,x′)

)
, (2.7)

where ma(x) is the mean function, and Ca(x,x′) is the covariance function, both being func-
tions of the position x. Now, by having the mean vector :

ma(XP) ,




E{a(x1)}
E{a(x2)}

...
E{a(xP )}


 =




ma(x1)

ma(x2)
...

ma(xP )


 , (2.8)
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and the covariance matrix :

Ca(XP ,XP) , E
{[

a(XP)−ma(XP)
][

a(XP)−ma(XP)
]T}

= E
{
a(XP)a(XP)T

}
−ma(XP)ma(XP)T , (2.9)

the pdf of the random vector a(XM) will be an MVN which depends on the positions XM :

pA

(
a(XM)

)
=

1

(2π)
M
2 | Ca(XM,XM) | 12

e−
1
2

(
a(XM)−ma(XM)

)T(
Ca(XM,XM)

)−1(
a(XM)−ma(XM)

)
. (2.10)

GP has an interesting property which is called the marginalization property. This property
says that any subset of the underlying set of random variables has a normal distribution (2.3)
regardless of the rest of the set. The random variables within the retained subset are called
the marginal variables, and the mean and covariance of the normal distribution which specify
the marginal variables will be the corresponding components of the mean vector and of the
covariance matrix associated with the primary GP (2.7). The marginalization property of a
GP will be explained with more details in the next part, and we will show how it can be used
in the kriging approach for interpolating a signal from a few set of observations.

Finally, we note that the mean function can be a non-linear, or a linear parametrized
function as follows :

ma(x) =

p∑

i=1

βifi(x) (2.11)

where βi’s are parameters and fi(x)’s are some fixed functions. Also, the function Ca(x,x′)
specifies the covariance matrix of the GP at any two points x and x′. Different types of kernels
are reported in the literature [Ste12] ; [RW06]. Depending on the behavior of the underlying
gain function, we use a different kernel. For example, if we want to model a rather smooth
gain function with infinitely differentiable sample-paths, we can use the following squared
exponential kernel :

Ca(x,x′) = σ2
a exp

(
− 1

2
r(x,x′)

)
(2.12)

where r(x,x′) = (x − x′)TDiag{ρa}−1(x − x′), with Diag{ρa} denoting a diagonal matrix

with its diagonal entries equal to the elements of ρa, and ρa =
[
ρ

(1)
a · · · ρ(D)

a

]T
being a vector

with correlation length-scales for the different spatial axes. By increasing ρ
(i)
a , the spatial

gain becomes smoother, and by decreasing this parameter, the spatial gain becomes more
non-smooth. Parameter σa is the standard deviation of the process, and thus, it controls the
amplitude of its fluctuations around ma(x).

2.1.2 Kriging : prediction using observations

In this part, we discuss about the classical kriging approach to predict a physical phenome-
non based on some observations. The kriging approach is an interpolation technique relying
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on GP. Here, we will explain how the marginalization property of a GP can be useful to
interpolate the underlying signal using kriging.

To this end, we give an example of the optimal sensor placement problem which this thesis
is based on. From Chapter 1, we recall the source extraction problem where we have a source
signal s(t) attenuated by passing through a spatial field being characterized by the spatial
gain a(x). Assuming n(x, t) to be an additive noise signal, the measurement

y(x, t) = a(x)s(t) + n(x, t)

is recorded at time t using a sensor at position x. If we consider M sensors located at XM =

[x1, x2, . . . ,xM ]T , we obtain a set of noisy measurements

y(XM, t) = a(XM)s(t) + n(XM, t),

and the purpose is to find the best sensor positions XM to have the best extraction of the
source s(t). To solve this problem, the classical kriging methods first estimate the best M
sensor locations such that the best estimation of the spatial gain at the rest of the space is
achieved.

To apply the kriging approach to the sensor placement problem, we assume the unknown
spatial gain a(x), which is a function of the space x, to be a GP (2.7) with deterministic
mean vector ma(x) and covariance matrix Ca(x,x′). Consider XP = [x1, x2, . . . , xP ]T to be
the spatial candidates for sensor placement with index set P = {1, 2, . . . , P}, and a set of
initial K sensors located at positions XK, where K ⊂ P represents the indexes of the selected
positions for sensors placement. Now, we select an arbitrary subset XN ⊂ XP\K from the
unobserved positions, denoting the indexes of the unobserved positions by P\K. Let’s XM be
the union of the initial positions XK and the new positions XN , indicating the total number
of positions for sensor placement. Then, the covariance matrix Ca(XM,XM) which contains
the uncertainty information about the spatial gain at the observed positions and the selected
unobserved positions, can be partitioned as follows :

Ca(XM,XM) =

[
Ca(XK,XK) Ca(XK,XN )

Ca(XN ,XK) Ca(XN ,XN )

]
. (2.13)

The mean vector can also be written in blocks as :

ma(XM) =

[
ma(XK)

ma(XN )

]
. (2.14)

Since a(x) is a GP, any random vector consisting of the spatial gains at a subset of the
space has a multivariate normal distribution. So, a(XM) has a multivariate normal distribu-
tion and if a(XK) represents the observations measured by the sensors, then, by using the
marginalization property of the GP, the distribution of the spatial gain at XN conditioned on
the observations a(XK) has a multivariate normal distribution as follows :

a
(
XN

∣∣ XK
)
∼MVN

(
ma(XN

∣∣ XK
)
, Ca

(
XN ,XN

∣∣ XK
))
, (2.15)
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with the following conditional mean vector :

ma(XN
∣∣ XK) = ma(XN ) + Ca(XN ,XK)Ca(XK,XK

)−1(a(XK)−ma(XK)
)
, (2.16)

and conditional covariance matrix :

Ca(XN ,XN
∣∣ XK) = Ca(XN ,XN )−Ca(XN ,XK)Ca(XK,XK)−1Ca(XK,XN ). (2.17)

Note that in the case of noisy observations of the spatial gain, i.e. z(XK) = a(XK) + b(XK),
by assuming the additive noise b(XK) to be independent of a(XK) and having a normal
distribution with zero mean and covariance matrix Cb(XK,XK), the above equations remain
intact, except that the covariance matrix Ca(XK,XK) will be replaced by Ca(XK,XK) +

Cb(XK,XK). That is :

Ca(XN ,XN
∣∣ XK)

= Ca(XN ,XN )−Ca(XN ,XK)
[
Ca(XK,XK) + Cb(XK,XK)

]−1Ca(XK,XN ). (2.18)

2.2 Optimal design

Optimal design is a set of experiments that optimally specifies a statistical model according
to a set of observations e.g. [Puk87] ; [Atk88] ; [Atk96] ; [BV04]. To estimate the parameters
of a statistical model, optimal design reduces the required experiments and optimizes the pa-
rameters such that the estimator becomes unbiased, with low variance. The more information
the observations carry about the parameters, the better the estimation of the parameters. In
what follows, we describe how an optimal design works, and for providing a clear understan-
ding of its link to the optimal sensor placement, we continue with an example of the estimation
of the spatial gain.

2.2.1 Maximum Likelihood (ML) estimator and Fisher information

Let’s consider h(x; Θ) to be a model for representing a(x), i.e. the spatial gain at position x.
This model depends on a set of parameters Θ = [θ1, θ2, . . . , θL]T , and by taking a position x
as an input, it provides us with an approximation of the true spatial gain in the output :
â(x) = h(x; Θ). If we denote ε(x) = a(x) − â(x) as the model error, then, we have the
following :

a(x) = â(x) + ε(x) = h(x; Θ) + ε(x). (2.19)

The block-diagram to illustrate the above equation is given in Fig. 2.1.

Now, our purpose is to estimate the model parameters Θ according to a set of obser-
vations recorded by sensors. In the previous chapter, we showed that the set of noisy mea-
surements y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T collected by M sensors located at
XM = [x1, x2, . . . ,xM ]T can be described according to the following equation :

y(XM, t) = a(XM)s(t) + n(XM, t), (2.20)
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Figure 2.1: Caption

2.1.1 Maximum Likelihood (ML) estimator and fisher information

Let’s consider f(x; ⇥) to be a model for representing a(x) i.e. the spatial gain at position
x. This model consists of a set of parameters ⇥ = [✓1, ✓2, . . . , ✓T ]T and by taking a position
x as an input, it provides us with an approximation of the spatial gain in the output : â(x) =

f(x; ⇥). If we assume "(x) = a(x) � â(x) to be the model error, then, we have the following :

a(x) = â(x) + "(x) = f(x; ⇥) + "(x). (2.1)

Fig. 2.1 is the block-diagram to illustrate the above equation.

Now, our purpose is to estimate the model parameters i.e. ⇥ according to a set of ob-
servations recorded by sensors. In previous chapter we showed that the noisy measurement
collected by a sensor located at x can be described according to the following equation :

y(x, t) = a(x)s(t) + n(x, t). (2.2)

If we look at the above equation at an instant time t = t0, then we have :

y(x, t0) = a(x)s(t0) + n(x, t0), (2.3)

which is just dependent on the sensor position x. So, without any loss of generality, we can
consider s(t0) = 1, and then, the above notation can be simplified as :

y(x) = a(x) + n(x). (2.4)

Now, by replacing (2.1) in above equation, we have :

y(x) = f(x; ⇥) + "(x) + n(x). (2.5)
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f(x; ⇥). If we assume "(x) = a(x) � â(x) to be the model error, then, we have the following :
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Figure 2.1: The block-diagram of equation (2.19) to represent the error model of the spatial
gain approximation.

where s(t) is the source signal, a(XM) = [a(x1), a(x2), . . . , a(xM )]T is the spatial gain, and
n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T is the noise corresponding to the positions XM.
If we fix the time t at an instant t0 (t = t0), then we have :

y(XM, t0) = a(XM)s(t0) + n(XM, t0), (2.21)

which now only depends on the sensor positions XM. So, without any loss of generality, if we
record the data at a single instant t0, we can consider s(t0) = 1 (except for s(t0) = 0). In this
case, s(t) is a scaling factor that can be incorporated in the spatial gain a(XM) by adjusting
the parameters accordingly. Then, the above notation can be simplified as :

y(XM) = a(XM) + n(XM). (2.22)

Now, by replacing (2.19) in the above equation, we have :

y(XM) = h(XM; Θ) + ε(XM) + n(XM), (2.23)

where h(XM; Θ) = [h(x1; Θ), h(x2; Θ), . . . , h(xM ; Θ)]T , and ε(XM) =

[ε(x1), ε(x2), . . . , ε(xM )]T . In the above equation, two types of noises are considered :
ε(XM) is the model error (2.19) and it is assumed to be deterministic, and n(XM) is the
measurement noise assumed to be a random variable. This random assumption can be due
to different facts. For instance, if we have an electronic noise, this noise depends on the
temperature which is out of our control. Now, by combining the two noises, we end up with
the following equation :

y(XM) = h(XM; Θ) + e(XM), (2.24)

where e(XM) = n(XM) + ε(XM). Then, if we set pE
(
e(XM); Γ

)
to be the pdf of the

random noise e(XM) with deterministic set of parameters Γ = [γ1, γ2, . . . , γl]
T , the pdf of

the measurements y(XM) will be :

pY

(
y(XM); Θ, Γ

)
= pE

(
e(XM); Γ

) ∣∣∣∣∣
∂e(XM)

∂y(XM)

∣∣∣∣∣

∣∣∣∣∣
y(XM)=h(XM;Θ)+e(XM)

. (2.25)

Next, by considering Γ as an implicit parameter characterizing the distribution, and noting
∂e(XM)
∂y(XM) = 1, the above pdf can be simplified as follows :

pY

(
y(XM); Θ

)
= pE

(
y(XM)− h(XM; Θ); Γ

)
. (2.26)
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Note that if we assume that the considered model for the spatial gain is well adapted to
the spatial gain, it is possible to ignore the modeling noise ε, and set it equal to zero. Also,
considering the noise n(XM) to have a multivariate normal distribution with a zero mean
vector (i.e. there is no systematic error), and a deterministic covariance matrix Cn(XM,XM),
then pE

(
e(XM); Γ

)
= pN

(
n(XM)

)
with :

pN

(
n(XM)

)
=

1

(2π)M/2 | Cn(XM,XM) | e
− 1

2
n(XM)T

(
Cn(XM,XM)

)−1
n(XM). (2.27)

The measurements y(XM) will then have a multivariate normal distribution with mean
h(XM; Θ), and the covariance matrix Cn(XM,XM) :

y(XM; Θ) ∼MVN
(
h(XM; Θ),Cn(XM,XM)

)
. (2.28)

In estimation theory, minimizing the variance of an estimator is equivalent to maximizing
information [Kay93]. However, deriving the variance of the estimator is not always an easy task.
Finding a suitable lower-bound on the variance and minimizing it can be an approximate way
to solve the problem [Cra46] ; [Rao45]. A lower-bound on the variance of an unbiased estimator
can be obtained by the Cramér–Rao lower bound (CRLB) which is equivalent to the inverse of
the Fisher information matrix denoted by I(Θ) [Cra46] ; [Rao45] ; [Kay93] ; [Rao94] ; [Dar45] ;
[Gar58] ; [Mal99] :

Var(Θ̂) ≥ I−1(Θ). (2.29)

Therefore, the Fisher information matrix plays an important role in determining the amount
of information within the observations. To define the Fisher information matrix, we first start
with the log-likelihood function. Looking at the pdf pY

(
y(XM); Θ

)
(2.26) as a function of Θ,

the likelihood function is then defined as :

L
(

Θ | y(XM)
)
, pY (Y = y(XM) | Θ). (2.30)

The gradient of the log-likelihood function with respect to Θ defines the score function :

score
(

Θ | y(XM)
)
, ∇Θ logL

(
Θ | y(XM)

)
. (2.31)

Now, the Fisher information matrix is the variance of the score function, which itself is a
function of the parameter set Θ. With that in mind, the score is zero mean for unbiased
estimators, and the Fisher information matrix is defined as [Duc19] :

I(Θ) = Ey(XM)

[
∇Θ logL

(
Θ | y(XM)

)
∇Θ logL

(
Θ | y(XM)

)T]
(2.32)

=

∫ +∞

−∞
∇Θ logL

(
Θ | y(XM)

)
∇Θ logL

(
Θ | y(XM)

)T
pY(Y = y(XM) | Θ) dy(XM),

(2.33)

where in the above we have a multiple integral over all the elements of the measurement
vector y(XM). If the log-likelihood function is twice differentiable with respect to Θ, the
Fisher information matrix can also be written as :

I(Θ) = −Ey(XM)

[
∇2

Θ logL
(

Θ | y(XM)
)]
. (2.34)
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2.2.2 Alphabetical criteria

In order to simplify computational operations, different mathematical criteria, known as al-
phabetical criteria, have been proposed to quantify the information matrix in a scalar [Atk07].
A-optimality, D-optimality, and E-optimality are three common designs which, respectively,
maximize the trace, the determinant, and the largest eigenvalue of the Fisher information
matrix [CV95]. These optimality criteria are convex functions which have been well studied in
[BV04]. Most of the time, choosing one of them depends on several factors and considerations,
such as the difficulty of computing the criterion based on the model expression h(x,Θ), the
assumptions on the noise e(x), etc.

There are two remarks regarding approximating the variance of the ML estimator with
the inverse of the Fisher information matrix which are discussed in the following.

The first remark is that, the equality condition of the CRLB in (2.29) is satisfied if 1) a
linear model with respect to the parameters Θ is used, i.e. h(x; Θ) = ΘTx, and 2) the mea-
surements noise is additive and normally distributed with a deterministic covariance matrix.
Under these two conditions, the covariance of the estimator becomes equal to the inverse of
the Fisher information matrix. Therefore, it is possible to characterize the uncertainty by the
Fisher information matrix I(Θ). In Section 2.2.2, we will go more into the details of the linear
model, and show how the exact covariance matrix of the estimator is calculated under the
linearity assumption.

The second remark is that the ML estimator is asymptotically unbiased and efficient so
that the uncertainty of the parameter Θ (i.e. var(Θ̂)) converges to I−1(Θ) when the number of
measurements M increases to infinity. The consequence is that Θ̂ is asymptotically normally
distributed Θ̂

M→+∞
∼ N (Θ, I−1(Θ)), where Θ is the true value of the parameters. Therefore,

I−1(Θ) gives us an idea of the uncertainty of the parameters. However, in practice, the number
of measurements cannot be infinite, and as such, the result is only asymptotically true. This
approximation will be adequate if : 1) the number of measurements M is large, 2) the model
is only slightly non-linear with respect to the parameters, and 3) the measurement errors are
additive and normally distributed. Otherwise, if one of these conditions is not met, minimizing
the CRLB will not necessarily ensure that the uncertainty of the estimation Θ̂ will be better,
and the use of the matrix I−1(Θ) to quantify the uncertainty should be used with caution.

� Example1 : linear estimator

Previously, we mentioned that if we use a linear model with respect to the parameters
to be estimated, and also considering a normally distributed additive noise, the inverse of
the Fisher information matrix will be equal to the covariance matrix of the estimator and the
exact uncertainty of the estimation can be computed. In this part, we show how the covariance
matrix can be derived.

Consider the following linear model for the spatial gain :

â(x) = h(x; Θ) = ΘTx. (2.35)
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Let’s assume XP ∈ RD×P to be a matrix whose columns are the set of candidates for sensor
placement, and the set of positions XM = {x1, x2, . . . , xM} ⊂ XP be selected for sensor
placement. Then, by considering additive normally distributed noise, to obtain the maximum-
likelihood estimate of Θ, we target the following optimization problem where the loss function
is the Mean-Squared-Error (MSE) :

Θ̂ = argmin
Θ

1

2

M∑

i=1

(
y(xi)−ΘTxi

)2
. (2.36)

Solving the above problem provides the following estimator [Kay93] :

Θ̂ = (XMXT
M)−1XMyM, (2.37)

where XM = [x1, x2, . . . , xM ] ∈ RM×D, and yM = [y(x1), y(x2), . . . , y(xM )]T ∈ RM×1 are,
respectively, the sensor coordinates and the corresponding observations.

Now, assume that the noise e(XM) = [e(x1), e(x2), . . . , e(xM )]T is zero mean and spa-
tially uncorrelated with variance σ2

e , and as such, its covariance matrix is Ce(XM,XM) =

E{e(XM)e(XM)T } = σ2
eIM , where IM ∈ RM×M is the identity matrix. Then, it can be shown

that the above estimator is unbiased, i.e. E{Θ̂} = Θ, and the variance of the estimation error,
defined by ∆ = Θ− Θ̂, will be as follows [Kay93] :

Cov(Θ̂) = E{(Θ− Θ̂)(Θ− Θ̂)T } = σ2
e (XMXT

M)−1. (2.38)

As it can be seen, the variance of the estimator for a linear model is proportional to
(XMXT

M)−1. Since minimizing the above variance is proportional to maximizing the infor-
mation, it is desired to collect data at positions such that the minimum variance is obtained,
which means that we have a more accurate estimator. However, since minimizing a matrix
does not make sense as a criterion, it is required to define a scalar measure of the matrix. As
we mentioned before, there exist several scalarization criteria based on the spectrum 1 of (2.38)
such as A-optimality, D-optimality, and E-optimality, which can be used here to, respectively,
target the trace (the sum of the eigenvalues), the determinant (the product of the eigenvalues),
and the largest eigenvalue of (XMXT

M)−1. So, by minimizing any of these measures over the
sensor positions XM, we can obtain maximum information, and consequently, we achieve a
more accurate estimator.

� Example2 : best linear unbiased estimator (BLUE)

In this example, we apply best linear unbiased estimator [H71] to estimate the spatial gain
at positions of interest based on some observations recorded by a set of sensors. In this re-
gard, [KSG08] has suggested the following experiment. Imagine that we want to estimate the
values of the spatial gain in N positions denoted by the matrix XN where these positions
are unobserved, i.e. we can not put any sensors at these positions. Also, suppose that we
have K sensors located at positions XK, and based on the noisy measurements observed by

1. The spectrum of a matrix is the set of its eigenvalues.
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these sensors, we want to predict the spatial gain at XN . To this end, the BLUE suggests the
following linear model :

a(XK) = Υa(XN ) +$,

where Υ ∈ RK×N is the unknown model parameter, and $ is an additive model noise with
variance σ2

$. To find the parameter Υ, we minimize the mean squared error

Υ̂(XK) = argmin
Υ

E
{[
a(XK)−Υa(XN )

]T [a(XK)−Υa(XN )
]}
.

We note that here XN is known, and XK is unknown which we are looking for, and so, we look
at the parameter Υ as a function of XK. By considering the GP assumption on the spatial
gain with the covariance matrix Ca, and solving the above problem, we obtain the following
solution

Υ̂(XK) = Ca(XK,XN )Ca(XN ,XN )−1, (2.39)

whose error covariance is

Cov
(
Υ̂(XK)

)
= E

{[
Υ− Υ̂(XK)

][
Υ− Υ̂(XK)

]T}
=

1

σ2
$

[
Υ̂(XK)Υ̂(XK)T

]−1
. (2.40)

So, according to [KSG08], the best sensor locations XK to have the most precise estimation
of the spatial gain at the positions of interest XN , are the ones that minimize the error
covariance (2.40). However, since minimizing a matrix is not meaningful, we can use different
alphabetical ctiteria such as D-optimality (the log-determinant), A-optimality (the trace),
or E-optimality (the magnitude of the largest eigenvalue) to have a scalar interpretation of
Cov

(
Υ̂(XK)

)
. So, by applying any of these scalarization functions, the following problem is

solved for sensor placement

X̂K = argmin
XK

Cov(opti)(Υ̂(XK)
)
, (2.41)

where Cov(opti)(Υ̂(XK)
)
represents the scalarization of Cov

(
Υ̂(XK)

)
using any of the above-

mentioned optimality functions. We again emphasize that in [KSG08], the positions of inter-
est XN where we want to estimate the spatial gain are considered to be known and it is not
possible to put any sensor at these positions of interest.

However, the problem we are addressing in this thesis is slightly different from the above
problem presented in [KSG08]. In this thesis, we are not interested just in the estimation of
the spatial gain at a few positions, but, we are interested in the estimation of the spatial gain
in the whole underlying spatial field. Therefore, we assume that any position in the field can
be a candidate for sensor placement to estimate the spatial gain at the positions which we do
not put a sensor. So, we re-define the experiment as follows.

We assume that we have already put K sensors at positions XK (so, XK is known), and
now we want to select the next N sensor positions XN (which are unknown) such that based
on the measurements collected byM = K+N sensors, we can have the best estimation of the
spatial gain at the rest of the spatial field that we never put any sensor. So, logically, based
on the definition of the error covariance of the BLUE, the best choice for the positions of the
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next sensors are the ones that have larger error covariance Cov
(
Υ̂(XN )

)
, which is now being

considered as a function of the next unknown sensor positions :

Cov
(
Υ̂(XN )

)
= E

{
(Υ− Υ̂(XN ))(Υ− Υ̂(XN ))T

}
=

1

σ2
$

[
Υ̂(XN )Υ̂(XN )T

]−1
, (2.42)

where
Υ̂(XN ) = Ca(XK,XN )Ca(XN ,XN )−1. (2.43)

This means that the measurements collected by the primary K sensors do not contain enough
information about the spatial gain at the positions with large error covariance, and so, it
is crucial to directly collect information about the spatial gain by putting sensors at these
positions. Therefore, we solve the following maximization problem to select the positions of
the next N sensors :

X̂N = argmax
XN

Covopti(Υ̂(XN )
)
. (2.44)

To summarize, as it is seen, unlike in [KSG08], to solve the sensor placement problem in our
work, we are looking for the positions with larger error covariance to put new sensors to be
able to estimate the spatial gain in the whole spatial field.
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2.3 Bayesian design for optimal sensor placement

In the previous section, we explained that the classical experimental design considers a
deterministic model for the spatial gain â(x) = h(x; Θ), and the purpose was the best estima-
tion of the parameters Θ for the estimator to have a low covariance. We also explained that to
have a comprehensible meaning of a low variance matrix, different alphabetical criteria can be
used to scalarize the covariance matrix. If instead of a deterministic model, a prior stochastic
model â(x) ∼ pA(a(x); Θ) is used for a(x) which is the spatial gain at a single sensor position
x, the problem becomes a Bayesian version of the experimental design [Lin56]. In the Bayesian
design, if we consider the parameters Θ to be stochastic too, it is called a fully-Bayesian model
[Bis06]. In this case, the problem is solved over the best estimation of both the spatial gain
and the set of parameters. The fully-Bayesian design is out of the scope of this thesis and
here, we consider that the set of parameters Θ is deterministic.

In Bayesian design, since we considered a stochastic model a(x) for the spatial gain, the
sensor measurement in (2.24) is rewritten as follows

y(XM) = a(XM) + e(XM), (2.45)

where a(XM) is a random vector with distribution pA
(
a(XM); Θ

)
of the M sensors which is

our prior knowledge. As mentioned earlier, in this thesis, we consider the parameters Θ to be
deterministic, and the purpose of Bayesian design in the optimal sensor placement problem
is to find the best M positions to record the noisy measurements y(XM) such that using
interpolation techniques, the best estimation of the spatial gain at the rest of the positions
i.e. XP\M are obtained, where P\M represents the indexes of the unobserved positions.

To achieve this goal, by relying on some prior knowledge about the distributions of the
spatial gain and the noise, and considering them to be independent, different criteria have been
proposed. Among them, entropy and mutual information (MI) are two traditional criteria
which have been commonly used for sensor placement. In the rest of this section, we will
explain how these two criteria are used for optimal sensor placement.

2.3.1 The entropy criterion

In information theory, entropy is a well-known quantity which is used to determine the
amount of uncertainty within the possible values that a random variable can take [Sha48]. In
this part, we explain how entropy can be used for optimal sensor placement.

Let XP to be the set of possible positions in the space for sensor placement, and
pA

(
a(XM); Θ

)
to be the pdf of the spatial gain at the selected positions XM ⊂ XP . Then,

based on the concept of entropy, the most informative subset M ⊂ P with the cardinal
|M| = M , is the one that maximizes the entropy, which implies that the spatial gains at the
selected positions are mostly uncertain about each other. Therefore, the following problem is
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solved [Cur+91] to find the optimal M positions for sensor placement :

M = argmax
M⊂P;|M|=M

JH(XM), (2.46)

where JH(XM) = H
(
a(XM)

)
is the entropy of the spatial gain at the set of the positions

XM, being defined as follows :

H
(
a(XM)

)
= −

∫ +∞

−∞
pA

(
a(XM); Θ

)
log pA

(
a(XM); Θ

)
da(XM). (2.47)

Using entropy for optimal sensor placement can be seen from another viewpoint. Consider
H
(
a(XP\M) | y(XM)

)
to be the entropy of the spatial gain at the unobserved positions

conditioned on the measurements at the observed positions as follows :

JH
(
XP\M|XM

)
, H

(
a(XP\M) | y(XM)

)

= −
∫ +∞

−∞

∫ +∞

−∞
pA

(
a(XP\M), a(XM); Θ

)
log pA

(
a(XP\M) | y(XM)

)
da(XP\M)da(XM).

(2.48)

Then, the sensors are required to be located at positions such that H
(
a(XP\M) | y(XM)

)
is

minimized which implies that the observations at positions XM contain most of the informa-
tion about the spatial gain, and the unobserved positions do not have much more information
than the observed ones have. So, minimizing the conditional entropy of the unobserved posi-
tions can be a reasonable solution for sensor placement. This conditional entropy can also be
written as follows :

H
(
a(XP\M) | y(XM)

)
= H

(
a(XP)

)
−H

(
a(XM)

)
, (2.49)

Minimizing this criterion means that by subtracting the information obtained by the observed
positions, not much information remains in the rest of the positions. So, to achieve the best
sensor positions, we end up with the following minimization problem which is exactly the same
as in (2.46) :

M = argmax
M⊂P;|M|=M

H
(
a(XM)

)
= argmax
M⊂P;|M|=M

JH(XM). (2.50)

Finding the optimal solution to (2.50) requires a combinatorial search which has a high
computational cost, and according to [KLQ95] this problem is NP-hard. Therefore, a greedy
approach can be used to find a near optimal solution to this problem [MBC79] ; [Cre91]. In the
greedy approach, we assume thatK sensors have already been placed at positionXK = {xi}i∈K
with size |K| = K ≤ |M| = M , and we add the rest of the sensors one by one, i.e. each time
a single sensor is added at position xN with the size |N | = N = 1 leading to K + 1 number
of sensors. Taking into account the Gaussian assumption on the model of the spatial gain as
in (2.7), the conditional entropy is presented as follows :

H
(
a(xN ) | a(XK)

)
=

1

2
logCa(xN ,xN | XK) +

1

2
(log(2π) + 1), (2.51)
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where, Ca(xN ,xN | XK) is defined in (2.17). This criterion measures the uncertainty between
the spatial gain at the new position a(xN ) and the spatial gain at the previously selected
positions a(XK), and it is preferred to choose the location that maximizes this quantity.
Therefore, by defining

JH
(
a(xN ) | a(XK)

)
, H

(
a(xN ) | a(XK)

)
, (2.52)

the next sensor position given by this criterion is the following :

x̂N = argmax
N∈P\K

JH
(
a(xN ) | a(XK)

)
). (2.53)

The disadvantage of the above criterion is that the decision for sensor placement does not
depend on the measurements collected by the sensors, and it only depends on the prior know-
ledge on the covariance function of the model of the spatial gain, i.e. Ca. Also, it is shown
[Ram+05] that this criterion attempts to push the sensors far from each other and scatters
them in the boundaries of the space. Since the sensors sense their surrounding, pushing them
in the boundaries cause some parts of the measurements to be the signals which are not in
the region of our interest, and this fact causes waste of information.

2.3.2 The criterion based on the mutual information (MI)

Another way to tackle the problem of optimal sensor placement which resolves the weak
point of the entropy mentioned above is to use mutual information (MI). In [KSG08], it is
suggested to maximize MI

(
a(XM), a(XP\M)

)
which is the mutual information between the

selected locations for sensor placement XM and the rest of the positions XP\M :

M = argmax
M⊂P;|M|=M

MI
(
a(XM), a(XP\M)

)
, (2.54)

where MI
(
a(XM), a(XP\M)

)
, H

(
a(XM)

)
−H

(
a(XP\M) | a(XM)

)
.

Let’s assume that pA

(
a(XM); Θ

)
and pA

(
a(XP\M); Θ

)
are the distributions of the spatial

gain over the observed and unobserved locations, respectively. Then, the expected Kullback-
Leibler divergence between the pdfs of the spatial gain over the observed and unobserved
locations is the mutual information between these two sets of positions

MI
(
a(XM), a(XP\M)

)
=

∫
pA
(
a(XM); Θ

)∫
pA
(
a(XP\M); Θ | y(XM)

)

log
pA
(
a(XP\M); Θ | y(XM)

)

pA
(
a(XP\M); Θ

) da(XM)da(XP\M). (2.55)

In [KSG08], it is shown that this criterion outperforms the entropy criterion (2.46). It is
also proved that solving (2.54) is NP-hard, and therefore, a greedy algorithm is suggested to
obtain an approximate solution. In this regard, it is proposed to add the sensors one by one,
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such that the increase of the mutual information is maximized. So, assuming that K sensors
have already been located at XK, and the new single sensor is supposed to be located at xN
such that the following cost function is maximized :

JMI

(
a(xN ) | a(XK)

)
, MI

(
a(XM), a(XP\M)

)
−MI

(
a(XK),a(XP\K)

)
, (2.56)

where XM = [xN ,XK]T . Therefore, we have the following optimization problem :

x̂N = argmax
N∈P\K

JMI

(
a(xN ) | a(XK)

)
. (2.57)

In [KSG08] it is shown that JMI

(
a(xN ) | a(XK)

)
= H

(
a(xN ) | a(xK)

)
−H

(
a(xN ) | a(XP\M)

)
,

and under the Gaussian assumption for the spatial gain presented in (2.15), the above criterion
is simplified as follows :

x̂N = argmax
N∈P\K

Ca(xN ,xN )−Ca(xN ,XK)(Ca(XK,XK))−1Ca(XK,xN )

Ca(xN ,xN )−Ca(xN ,XM)(Ca(XM,XM))−1Ca(XM,xN )
. (2.58)

2.4 Conclusion

In this chapter, we reviewed classical approaches for optimal sensor placement which focus
on providing the best estimation of a spatial measured field. To this end, we first discussed
Gaussian Processes as a useful stochastic tool which is commonly used in this domain. Then,
we reviewed the kriging method as an interpolation technique which estimates the spatial gain
based on some observations. In the kriging approach, we look for the sensor positions such
that the best estimation of the spatial gain at the unobserved positions is achieved. Next, we
discussed about optimal design which is a model-based approach. In this method, a model is
considered for the spatial gain with a set of parameters Θ, and the purpose is to have the best
estimate of the model parameters with low variance. In order to have a comprehensive meaning
of a low covariance matrix and to quantify it, we reviewed the alphabetical criteria. We also
mentioned that, since calculating the variance of the estimator is not an easy task, usually
the inverse of the Fisher information as the lower bound of the variance is targeted. Finally,
we reviewed Bayesian design for optimal sensor placement. We explained that this approach
is also model-based. However, unlike the optimal design which assumes a deterministic model
for the spatial gain, Bayesian design considers a stochastic model for the spatial gain. By
relying on some prior knowledge about the distributions of the spatial gain and the noise,
two different criteria namely the entropy, and the mutual information were discussed for the
sensor placement problem.

Although the different approaches presented in this chapter have shown promising results
for the reconstruction of a spatial measured field, e.g. the spatial gain, having a good estimation
of the measurement field can not guarantee the best extraction of the desired source signal.
So, since our main goal is to extract the source signal, in the rest of this thesis, we will present
new approaches based on the best estimation in the signal-to-noise ratio (SNR) sense, and we
will compare our proposed methods with the classical approaches discussed in this chapter.
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As discussed in Chapter 1, unlike the classical kriging approaches which focus on the best
estimation of the spatial gain, in this thesis our goal is the best extraction of the source signal.
To this aim, this study is to predict the sensor locations so that the extraction of a single
source signal of interest from the recordings leads to the best estimation in the signal-to-
noise ratio (SNR) sense. By using a stochastic spatial model on the gain and on the noise,
and assuming that the sensor measurements follow the model presented in (3.1), we propose
a sensor placement criterion based on the maximization of the average SNR. This criterion
integrates not only the average gain and noise correlation, but also the uncertainty on the
gain.

In the rest of this chapter, we first introduce the linear estimator for source extraction
which we use throughout this thesis, and then the details of our first proposed method will be
presented. In the end, we illustrate the performance of the proposed method and compare it
with the classical kriging methods.

3.1 Linear estimator for source extraction

Let’s assume that the observation y(x, t) corresponds to a single sensor located at posi-
tion x and time t is a mixture of a source of interest s(t) and a spatially correlated additive

27
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noise n(x, t) as
y(x, t) = a(x)s(t) + n(x, t), (3.1)

where a(x) is the spatial gain between the signal of interest s(t) and a sensor at location
x. The vector x ∈ RD represents the coordinates of the sensor in the D-dimensional space.
Typically, D ∈ {1, 2, 3}, i.e. the sensor could be placed on a curve, on a surface or in 3D space,
respectively.

Considering that M sensors have been placed at locations XM = [x1, x2, . . . , xM ]T , we
have the corresponding measurement set y(XM, t) = [y(x1, t), y(x2, t), . . . , y(xM , t)]T at time
t being obtained as follows :

y(XM, t) = a(XM)s(t) + n(XM, t), (3.2)

where a(XM) = [a(x1), a(x2), . . . , a(xM )]T is the set of spatial gains, and n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T is the noise correlated with the set of sensor positions
XM. Now, the aim of a linear source extraction is to design an extractor vector f(XM) =

[f1(XM), f2(XM), . . . , fM (XM)]T ∈ RM to estimate the source s(t) as follows :

ŝ(t) = f(XM)Ty(XM, t), (3.3)

which by replacing (3.2), we have :

ŝ(t) = f(XM)Ta(XM)s(t) + f(XM)Tn(XM, t). (3.4)

It is seen that the estimation of the source using linear extractor consists of two terms :
the first term f(XM)Ta(XM)s(t) is the part related to the source signal, and the second
term f(XM)Tn(XM, t) is the remaining noise part. Classically, a criterion to choose the best
extractor vector f(XM) is the output signal-to-noise ratio (SNR) which is obtained by dividing
the two mentioned parts as follows :

SNR(f(XM)) =
Et
[(
f(XM)Ta(XM)s(t)

)2]

Et
[(
f(XM)Tn(XM, t)

)2] . (3.5)

Assuming that the signal time samples s(t) are temporally zero-mean, independent and iden-
tically distributed (iid) and denoting by σ2

s = Et[s(t)2] the variance of the source, and
by Cn(XM,XM) = Et[n(XM, t)n(XM, t)T ] the covariance matrix of the noise, then the
SNR (3.5) becomes

SNR(f(XM)) = σ2
s

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
. (3.6)

Now, by looking at the SNR as a function of the extractor vector, we maximize it over f(XM)

as follows to express the best extraction vector f∗(XM) 1 :

f∗(XM) = argmax
f(XM)

f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
. (3.7)

1. Note that here the scaling factor σ2
s is not tackled since in source extraction, the main goal is to enhance

the signal of interest. Additional prior information on the signal amplitude can then be used to properly scale
the extracted source.
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Taking the derivative of the above cost function and setting it equal to zero leads to the
following classical result [Kay93] :

f∗(XM) = Cn(XM,XM)−1a(XM). (3.8)

Finally, by replacing f∗(XM) in (3.6) the achieved output SNR is given by

SNR(f∗(XM)) = σ2
s a(XM)TCn(XM,XM)−1a(XM). (3.9)

3.2 Mean of the SNR as a criterion for optimal sensor place-
ment

Let’s assume that we want to locate M sensors to extract a source signal. The aim of
optimal sensor placement is to find the best locations X∗M so that the output SNR (3.6)
is maximized. If we consider a linear source extraction model as discussed in the previous
section, according to (3.9), we can see that the output SNR is also a function of the sensor
locations XM. So, by looking at the SNR as a function of XM, we define the following target
function

J(XM) = a(XM)TCn(XM,XM)−1a(XM), (3.10)

which needs to be maximized over XM such that :

X∗M = arg max
XM

J(XM). (3.11)

A difficulty arises from this scheme : to express the criterion (3.10), the optimal extraction
vector f∗(XM) (3.8) needs a perfect knowledge of the spatial gain a(x) of the underlying source
signal and of the noise’s spatial covariance Cn(XM,XM). To overcome this, we first assume
that Cn(XM,XM) can be modelled with a covariance kernel function kn(x,x′) [RW06] that
has been estimated almost perfectly (for instance from previous recordings without the source
of interest). On the contrary, the spatial gain a(x) of the source of interest is assumed to be
imperfectly known and is modelled as a stochastic Gaussian process :

ã(x) ∼ GP
(
ma(x), ka(x,x′)

)
, (3.12)

where ma(x) is its mean function and ka(x,x′) is its covariance function. From this modelling,
ma(·) is the main behaviour of the spatial gain and ka(·, ·) represents the uncertainty that we
have on it. In practice, these two functions can be expressed either from some prior knowledge
of the recorded physical phenomenon, or from previous estimation, e.g. the output of inde-
pendent component analysis applied on previously recorded data. Since ã(x) is stochastic, the
SNR becomes stochastic, too. Consequently, in practice we suggest the mean output SNR as
the criterion to be optimized, which is defined as follows :

JE(XM) = E
{
ã(XM)TCn(XM,XM)−1ã(XM)

}
. (3.13)
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Since the expression inside the expectation is scalar, it can be replaced by its trace, and by
using the cyclic property of trace, we have the following :

JE(XM) = Tr
[
E
{
ã(XM)ã(XM)T

}
Cn(XM,XM)−1

]
.

Now, setting E
{
ã(XM)ã(XM)T

}
= Ca(XM,XM) + ma(XM)ma(XM)T , and using the un-

certainty model (3.12), JE(XM) becomes :

JE(XM) = (3.14a)

ma(XM)TCn(XM,XM)−1ma(XM) (3.14b)

+ Tr
[
Cn(XM,XM)−1Ca(XM,XM)

]
, (3.14c)

where Ca(XM,XM) ∈ RM×M is the covariance matrix whose (i, j)th element is ka(xi,xj).
The above equation consists of two terms. The first term (3.14b) is the SNR based on the
average knowledge of the spatial gain. The additional term (3.14c) takes into account the
uncertainty on the spatial gain. In practice, the optimal sensor locations are thus obtained as

X̂M = argmax
XM∈RD×M

JE(XM). (3.15)

However, this optimization problem is difficult to solve, because the criterion JE(XM) 1) is
non-convex, and 2) lies in a high dimensional space (M ×D). To overcome these difficulties,
we replace (3.15) by

X̂M = argmax
XM⊂XP

JE(XM), (3.16)

so that the search space has now a finite number of candidates.

After presenting an appropriate objective function and formulating the problem, it is requi-
red to provide an efficient way to solve the problem. Nevertheless, directly maximizing (3.16)
can lead to a high computational cost because it needs to place M sensors in a D-dimensional
space simultaneously, (i.e. it is an optimization problem of size M ×D). For instance, assume
that D = 3 and the candidates for sensor placement are in a cube of size 10× 10× 10, resul-
ting in P = 103 total number of candidates. If we aim to use M = 5 sensors, to find the best
sensor positions out of the candidates that maximize (3.14c), one needs to evaluate a total of(

103
5

)
= 103!

5!(103−5)!
' 8.25 × 1012 cases that corresponds to a combinatorial search which has

a very high computational cost. To avoid this, one can use a greedy approach that selects the
M sensors by sequentially selecting N < M sensors at a time. Assuming that K sensors have
already been placed at XK, and by defining R(XM,XM) , Cn(XM,XM)−1, to choose the
locations of the N following ones, the criterion (3.14) is recast as

JE(XN |XK) = E

{
[
ã(XK)T , ã(XN )T

] [R(XK,XK) R(XK,XN )

R(XN ,XK) R(XN ,XN )

] [
ã(XK)

ã(XN )

] ∣∣∣∣XK
}

(3.17)

= E
{

ã(XK)TR(XK,XK)ã(XK) + 2× ã(XK)TR(XK,XN )ã(XN )

+ ã(XN )TR(XN ,XN )ã(XN )

∣∣∣∣XK
}
.
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In (3.17), conditioning on XK means that ã(XK) and the upper diagonal block of R(XK,XK)

are independent of the new sensor locations XN . So, JE(XN |XK) can be rewritten as

JE(XN |XK) = ã(XK)TR(XK,XK)ã(XK) + 2× ã(XK)TR(XK,XN )E
{
ã(XN )

∣∣∣XK
}

+ Tr
[
R(XN ,XN )E

{
ã(XN )ã(XN )T

∣∣∣XK
}]

,

where E
{
ã(XN )

∣∣XK
}

= ma(XN
∣∣ XK

)
is the conditional mean vector

ma(XN
∣∣ XK

)
= ma(XN ) + Ca(XN , XK)Ca(XK, XK

)−1(a(XK)−ma(XK)
)
,

and E
{
ã(XN )ã(XN )T

∣∣XK
}

= Ca(XN ,XN
∣∣XK) + ma(XN

∣∣XK
)
ma(XN

∣∣XK
)T , with the

following conditional covariance matrix

Ca(XN ,XN
∣∣XK) = Ca(XN ,XN )−Ca(XN ,XK)Ca(XK,XK)−1Ca(XK,XN ).

Therefore, to find the positions of the N new sensors, the following problem has to be solved :

X̂N = argmax
XN∈RD×N

JE(XN |XK). (3.18)

Once the sensor locations X̂M are obtained sequentially, one can extract the source of inter-
est (3.3) using the estimated extractor vector

f̂(XM) = Cn(XM,XM)−1ma(XM). (3.19)

It is seen that the proposed approach gives a direct sensor placement criterion for source
extraction and it is in contrast to standard sensor placement using kriging which consists of
two steps : the standard kriging to select the sensor locations to maximize the information
of the spatial gain, and then extracting the source of interest from the mixtures. Fig. 3.1
schematically presents this difference between the kriging approach and our proposed method
which had also been mentioned in Chapter 1.

3.3 Performance analysis

Assume that the estimation of a(x) by the mean function ma(x) can be written as

ma(x) = a(x) + ba(x), (3.20)

where ba(x) would represent the estimation bias. Then, the optimized criterion (3.14) can be
expressed as

JE(XM) = (3.21a)

J(XM) (3.21b)

+ 2a(XM)TCn(XM,XM)−1ba(XM) + ba(XM)TCn(XM,XM)−1ba(XM) (3.21c)

+ Tr
[
Cn(XM,XM)−1Ca(XM,XM)

]
, (3.21d)
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4 Chapitre 1. Introduction
2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fT y(XK , t) = fT a(XK)s(t) + fT n(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fT aKs(t))
2
] / E[(fT nK(t))

2
], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (fT aKaT

Kf) / (fT Rn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)

�1
aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aT

K(Rn
K)

�1
aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aT
M (Rn

M )
�1

aM (6)

is maximum: X�
M = arg maxXM

J(XM ).
A difficulty arises from this scheme: the optimal extrac-

tion vector f�
M (4) needs a perfect knowledge of the spatial

gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
behaviour of the spatial gain and ka(·, ·) represents the un-
certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
physical recorded phenomenon, either from previous estima-
tion, such as the output of independent component analysis
applied on previously recorded data. Consequently, in prac-
tice the criterion to optimize is defined as the mean output
SNR

Ĵ(XM ) = E[âT
M (Rn

M )
�1

âM ], (8)

where âM is an estimation of aM . Using uncertainty model (7),
Ĵ resumes to

Ĵ(XM ) = (ma
M )

T
(Rn

M )
�1

ma
M + Tr((Rn

M )
�1

Ra
M ), (9)

where Ra
M 2 RM�M is the covariance matrix whose (i, j)th

element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = arg max
XM

Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥ D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âT
K+N (Rn

K+N )
�1

âK+N |XK ], (11)

where K +N means {XN

S
XK} and thus âK+N 2 RK+N

can be divided as âK+N = [âT
K , âT

N ]T . The conditional
mean (11) means that âK and the upper diagonal block of
Rn

K+N are independent of the new sensor locations XN .

Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fT y(XK , t) = fT a(XK)s(t) + fT n(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fT aKs(t))
2
] / E[(fT nK(t))

2
], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2

S = E[s(t)2]
and Rn

K = E[nK(t)nT
K(t)], then the SNR (3) resumes to

SNR(f) = �2
s (fT aKaT

Kf) / (fT Rn
Kf). Maximizing it to

express the best extraction vector f� leads to1

f� = (Rn
K)

�1
aK , (4)

and the achieved output SNR is given by

SNR(f�) = �2
S aT

K(Rn
K)

�1
aK . (5)

2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aT
M (Rn

M )
�1

aM (6)

is maximum: X�
M = arg maxXM

J(XM ).
A difficulty arises from this scheme: the optimal extrac-

tion vector f�
M (4) needs a perfect knowledge of the spatial

gain a(x) of the source of interest and of the spatial covari-
ance of the noise to express the criterion (6). To overcome
this, we assume that Rn

M can be modelled with a covariance
kernel function kn(x,x�) [13] that has been estimated almost
perfectly (for instance from previous recording without the
source of interest). On the contrary, the spatial gain a(x) of
the source of interest is imperfectly known and is modelled as
a stochastic Gaussian process:

â(x) ⇠ GP(ma(x), ka(x,x�)), (7)

where ma(x) is the mean function and ka(x,x�) is the co-
variance function. From this modelling, ma(·) is the main
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certainty that we have on it. In practice, these two functions
can be expressed either from some prior knowledge of the
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element is ka(xi,xj) and Tr(·) is the trace operator. The op-
timal sensor locations are thus obtained as

X̂M = arg max
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Ĵ(XM ). (10)

However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥ D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as

Ĵ(XN |XK) = E[âT
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by

ŝ(t) = fT y(XK , t) = fT a(XK)s(t) + fT n(XK , t), (2)

where y(XK , t) = [y(x1, t), . . . , y(xK , t)]T , a(XK) =
[a(x1), . . . , a(xK)]T and n(XK , t) = [n(x1, t), . . . , n(xK , t)]T .
Classically, a criterion to choose the best f is the output
signal-to-noise ratio (SNR) defined by

SNR(f) = E[(fT aKs(t))
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] / E[(fT nK(t))
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], (3)

where for the sake of simplicity wK stands for w(XK)
for any spatial function w(·). Assuming that the signal
time samples are temporally zero-mean, independent and
identically distributed (iid) and denoting �2
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2.2. Optimal sensor location for source extraction

If M sensors are used, the aim of optimal sensor location for
source extraction is thus to find the best location X�

M so that

1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.

the output SNR (3) is maximum. According to (5), this prob-
lem resumes to choose XM such that

J(XM ) = aT
M (Rn

M )
�1

aM (6)

is maximum: X�
M = arg maxXM

J(XM ).
A difficulty arises from this scheme: the optimal extrac-

tion vector f�M (4) needs a perfect knowledge of the spatial
gain a(x) of the source of interest and of the spatial covari-
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
in the form of electrocardiogram (ECG) is the source signal s(t). The fetal ECG is attenuated
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2. PROPOSED METHOD

This section details the proposed method to choose the best
sensor locations for source extraction.

Assumption:

• K sensors are already allocated

• Choosing other N sensor locations

2.1. Linear estimator for source extraction

Let us assume that the observation y(x, t) at location x and
time t is a mixture of a source of interest s(t) and a spatially
correlated additive noise n(x, t) as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain of the signal of interest s(t) at
location x. The vector x 2 RD represents the coordinates
of the sensor in the D-dimensional space. Typically, D 2
{1, 2, 3}, i.e. if the sensor can be placed on a curve, on a
surface or in 3D space, respectively.

Considering that K sensors have been placed at locations
XK = {xk}k�{1,···,K}, the aim of linear source extraction is
to design a vector f 2 RK to estimate the source by
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1The scaling factor is here not tackled since in source extraction, the main
goal is to enhance the signal of interest. Additional prior information on the
signal amplitude can then be used to properly scale the extracted source.
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However, directly maximizing (9) can lead to a high com-
putational cost since it needs to place M sensors in a D-
dimensional space simultaneously (i.e. it is an optimization
problem of size M ⇥D). To avoid this, one can use a greedy
approach that selects the M sensors by sequentially selecting
N < M sensors at a time. Assuming that K sensors have al-
ready been placed, to choose the locations of the N following
ones, criterion (8) will be recast as
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

In Fig. 1.1 we illustrate an example of a pregnant woman in order to better understand the
above model. In this example, the fetal heart signal which can be considered to be recorded
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K+N (Rn

K+N )
�1
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Figure 1.1: An example of a pregnant woman to illustrate the model of noisy measurements
collected by a set of sensors. The measured signals are the attenuation of a source signal (e.g.
fetal ECG) throughout a spatial gain (e.g. maternal abdominal tissues). Other source signals
such as maternal ECG are considered as the environmental additive noise.

1.1 A preface to optimal sensor placement for signal extraction

Many signal processing problems can be cast from a generic setting where a source signal
attenuates through a given structure to the sensors. For example, a heating system e.g. a
radiator produces the source thermal signal which attenuates through a room, and a sensor
receives the attenuated signal and records the temperature at its installed position. To describe
a model for the measurement y(x, t) recorded at time t by a sensor positioned at x 2 X ✓ RD,
consider that the source signal s(t) is attenuated through an space described by a(x) as the
spatial gain between the source and the sensor. Then, the noisy measurement is related to the
source signal s(t) as follows :

y(x, t) = a(x)s(t) + n(x, t), (1.1)

where n(x, t) is the corresponding spatially correlated/time uncorrelated additive noise.
Now, if M sensors are used at locations XM = [x1,x2, . . . ,xM ]T , then the set of
noisy measurements related to each sensor can be denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T , where ·T is the transpose operator. Note that in this
thesis, all signals are considered to be real values. We also denote n(XM, t) =

[n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T the corresponding
noise and spatial gain vectors, respectively. One can then write the measurement model (2.1)
for the set of sensors XM in a general compact form as follows :

y(XM, t) = a(XM)s(t) + n(XM, t). (1.2)

â(XM) In Fig. 1.1 we illustrate an example of a pregnant woman in order to better
understand the above model. In this example, the fetal heart signal which can be considered
to be recorded in the form of electrocardiogram (ECG) is the source signal s(t). The fetal

(b) kriging approach

Figure 3.1: Comparison between the kriging methods and the proposed sensor selection
scheme for source extraction. Top : our proposed approach in this thesis selects sensor positions
according to the best extraction of the source signal. Bottom : the classical kriging approaches
select sensor positions according to the best extraction of the spatial gain, and then, a source
extraction method is used to recover the source signal from the measurements recorded by the
sensors.

where J(XM) is the true value of the SNR with the perfect knowledge on the spatial gain
which is represented in (3.10). The criterion JE consists of three terms : the first term (3.21b)
is the true criterion SNR, i.e. the SNR assuming a perfect knowledge on the spatial gain a(x),
the second term (3.21c) which we denote it by Jb(XM) is the dependence on the estimation
bias ba(XM), i.e., the impact of a deterministic error on the spatial gain, and the third
term (3.21d) is the dependence on the uncertainty of the spatial gain Ca(XM,XM) and we
denote it by Ju(XM). Consequently, this shows that depending on the particular realization
of error term, the optimal selected sensor locations X̂M are not necessarily the true optimal
sensor locations X∗M. The larger the bias and uncertainty are, the more different the estimated
SNR JE from the optimal SNR J is.

Next, for the extractor vector (3.19), we reformulate the SNR. Since the spatial gain is
not perfectly known, from (3.8) we conclude that the extractor vector becomes stochastic
and we represent the random extractor vector as f (XM) = Cn(XM,XM)−1ã(XM). Now,
to demonstrate the SNR, by recalling it from (3.6), and replacing the extractor vector with
Cn(XM,XM)−1ã(XM), and taking the mean over the random extractor vector, we have the
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following

SNR
(
f̂ (XM)

)
= σ2

s

Ef

{
f (XM)Ta(XM)a(XM)T f (XM)

}

Ef

{
f (XM)TCn(XM,XM)f (XM)

} .

In the above equation, we should note that the term a(XM)a(XM)T in the numerator is
deterministic and obtained by the measurements, and the randomness comes from the ran-
domness of the extractor vector f (XM). By replacing f (XM) = Cn(XM,XM)−1ã(XM), we
have

SNR
(
f̂ (XM)

)
= σ2

s

Eã

{
ã(XM)TCn(XM,XM)−1a(XM)a(XM)TCn(XM,XM)−1ã(XM)

}

Eã

{
ã(XM)TCn(XM,XM)−1ã(XM)

} .

Note that by SNR
(
f̂ (XM)

)
we denote the SNR which is obtained by averaging

over the random extractor vector (estimated extractor vector). Now, using f∗(XM) =

Cn(XM,XM)−1a(XM) (3.8), we have

SNR
(
f̂ (XM)

)
= σ2

s

f∗(XM)T Eã

{
ã(XM)ã(XM)T

}
f∗(XM)

Eã

{
ã(XM)TCn(XM,XM)−1ã(XM)

} .

If we simplify the denominator as in (3.14), and replace E
{
ã(XM)ã(XM)T

}
=

Ca(XM,XM) + ma(XM)ma(XM)T in the numerator, we end up with

SNR
(̂
f(XM)

)
=

σ2
S ×

[
f∗(XM)Tma(XM)

]2
+ f∗(XM)TCa(XM,XM)f∗(XM)

ma(XM)TCn(XM,XM)−1ma(XM) + Tr
[
Cn(XM,XM)−1Ca(XM,XM)

] . (3.22)

By replacing ma(XM) = a(XM) + ba(XM), and defining ctr(XM,XM) ,
Tr
[
Cn(XM,XM)−1Ca(XM,XM)

]
, with a straightforward simplification we obtain

SNR
(̂
f(XM)

)
= σ2

S×[
f∗(XM)Ta(XM) + f∗(XM)Tba(XM)

]2
+ f∗(XM)TCa(XM,XM)f∗(XM)

a(XM)T f∗(XM) + 2f∗(XM)Tba(XM) + ba(XM)TCn(XM,XM)−1ba(XM) + ctr(XM,XM)
.

Finally, by recalling the true SNR with the perfect knowledge on the extractor vector (3.9),
i.e. SNR

(
f∗(XM)

)
= σ2

s a(XM)TCn(XM,XM)−1a(XM), the above can be rewritten as

SNR
(̂
f(XM)

)
= SNR

(
f∗(XM)

) α
β
, (3.23)

where

β = 1 +
1

f∗(XM)Ta(XM)
×
(

2 f∗(XM)Tba(XM) + ba(XM)TCn(XM,XM)−1ba(XM)

+ Tr
[
Cn(XM,XM)−1Ca(XM,XM)

]
)
,
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and

α =

[
1 +

f∗(XM)Tba(XM)

f∗(XM)Ta(XM)

]2

+
f∗(XM)TCa(XM,XM)f∗(XM)

[
f∗(XM)Ta(XM)

]2 .

This means that the achieved SNR, i.e. SNR
(̂
f(XM)

)
, is equal to the oracle one, i.e.

SNR
(
f∗(XM)

)
, up to a multiplicative term that depends both on the bias ba(XM) of the

estimation of a(XM) and on the uncertainty Ca(XM,XM) of a(x). This multiplicative term
is lower than one (by the definition of f∗(XM)) indicating a loss of performance due to both
the bias of estimation and uncertainty compared to the oracle SNR, i.e. SNR

(
f∗(XM)

)
.

3.4 Numerical experiments

In this section, to choose the location of the sensors, the proposed method (3.18) which
is based on maximizing the output SNR will be compared to the kriging methods such as
entropy (2.53) [SW87a] ; [Cre90], or mutual information (2.57) [KSG08], which are two steps
methods : 1) estimating the spatial gain, 2) extraction of the source signal. The methods
will be compared according to the achieved output SNR (3.23) relying on the extraction
vector f̂(XM) (3.19) that depends on the chosen sensor locations. The optimal SNR (3.9) will
be denoted oracle SNR since it assumes a perfect knowledge of the gain a(x).

3.4.1 Numerical setup

For the numerical experiments, the data are generated synthetically, and we consider D,
the dimension of the space, to be equal to 1. The range of the sensor position x is normalized,
leading to x ∈ [0, 1] in a regular grid of size P with the index set P = {1, 2, . . . , P}. So,
the underlying grid for sensor locations is denoted by the vector xP = [x1, x2, . . . , xP ]T .
We note that depending on the smoothness of the signals, the size of the grid may change
in different experiments which will be specified in each experiment. Generally, the more non-
smooth the signal is, the tighter the grid is, which means that we have to increase the size
of the grid to be able to detect the important information according to the changes of the
signal. In our experiments, we consider three initial sensors (K = 3) xK ⊂ xP , one in the
middle, and the other two near the right side and the left side of the grid. We assume that the
standard deviation of the source signal σs is equal to 1. The spatial gain ã(x), and the additive
noise n(x, t) are produced from Gaussian processes GP

(
m(x), C(x, x′)

)
. The covariance matrix

is generated from a square exponential function C(x, x′) = σ2 exp(−(x − x′)2/(2ρ2)). The
smoothness degrees for the spatial gain ρa, and for the noise ρn, as well as the standard
deviations σa and σn will take different values, which will be mentioned in each experimental
part. The standard deviation σa (resp. σn) is related to ã(x) (resp. to n(x, t)). Similarly, the
length scale ρa (resp. ρn) is related to ã(x) (resp. to n(x, t)). The mean function mn(x) for the
noise is considered to be 0, and ma(x) for the spatial gain ã(x) is randomly generated by a GP
with a zero-mean function, the standard deviation σma = 0.5, and ρma = ρa. Also, the mean
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estimation bias ba(x) is produced by a GP with the same smoothness as in the spatial gain,
i.e. we set ρb = ρa, and also we choose σb (the power parameter of the estimation error in
(3.20)) such that the SNR between the mean signal ma(x) and the bias signal ba(x) becomes
5 dB.
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3.4.2 Accuracy of the proposed criterion

In this experiment, we study the behaviour of the proposed method and evaluate its ability
to detect the best positions for sensor placement in terms of the best output SNR. Fig. 3.2
and Fig. 3.3 illustrate the accuracy of the proposed method and compare its performance with
that of MI as a classical kriging method for sensor placement.

To optimize (3.14), a grid search method is used : P = 500 linearly spaced possible
sensor locations are tested between 0 and 1, with three initial sensors arbitrary located at
xK = [x83, x250, x417]T = [0.1643, 0.4990, 0.8337]T . To generate ã(x) and its meanma(x), the
smoothness and power parameters defining the covariance function are ρa = ρma = 0.05 and
σa = σma = 0.5, respectively. We note that a small ρa corresponds to a non-smooth situation,
e.g. the spatial field in the ocean, and a large ρa corresponds to a smooth spatial gain e.g. the
maternal abdominal tissues. Also, 500 time samples of s(t) are randomly and independently
drawn from a zero mean normal distribution with σs = 1. To set up the parameters of the
noise n(x, t), we consider different situations. First, we choose the power parameter σn, based
on the SNR representing the ratio between the power of the signal and the power the noise
according to the following :

SNRy[dB] = 10 log

(
σ2
s

σ2
n

1

P

P∑

i=1

a(xi)
2

)
. (3.24)

We study two cases : in the first case presented in Fig. 3.2, we assume a difficult situation
by setting the power parameter of the noise σn such that the SNR is −5 dB. In the second
case shown in Fig. 3.3, we assume an easier condition and set σn to achieve SNR = 0 dB.
For each of these cases, we take into account three smoothness degrees for the noise compared
to the smoothness of the spatial gain : a) a very smooth noise by setting ρn/ρa = 15, b) a
moderate smoothness condition ρn/ρa = 1, and c) almost white noise ρn/ρa = 0.01. For each
experiment, we generate 500 time samples of the noise n(x, t). Each of these three configura-
tions consist of four parts : In part I, a sample signal of the noise (yellow curve), the spatial
gain (red curve), and the measurements (blue curve), as well as the positions of three initial
sensors (black circles) are depicted. Part-II represents an example of the spatial gain (blue
curve), its mean (the red curve), and its uncertainty (the gray shadow). In Part-III we have
reported the oracle SNR (blue curve) which is the true SNR with the true extractor vector,
and the true SNR with the estimated extractor vector (yellow curve), and the proposed cri-
terion which is the average SNR (red curve). Part-IV depicts the results obtained by the MI
criterion (purple curve) and the D-optimality criterion denoted by Opt.Crit.1 (green curve)
and Opt.Crit.2 (blue curve) which, respectively, target the posterior covariance (2.18) 2 , and
the error covariance obtained from the BLUE (2.42) 3 . In Part-IV, the criteria are normalized
between zero and one. Note that in Parts III and IV, the diamonds show the maxima of the
corresponding criteria, e.g. the red diamond in Part-III is the maxima of the proposed criterion
JE . Also, to compare the results, we have denoted the maximum of JMI with purple color in
Part III.

2. Ca(XN ,XN
∣∣ XK) = Ca(XN ,XN ) − Ca(XN ,XK)

[
Ca(XK,XK) + Cb(XK,XK)

]−1Ca(XK,XN ).

3. Cov
(
Υ̂(XN )

)
= 1

σ2
$

[
Υ̂(XN )Υ̂(XN )T

]−1

, where Υ̂(XN ) = Ca(XK,XN )Ca(XN ,XN )−1.
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(a) Very smooth noise : ρn/ρa = 15.
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(b) Medium noise smoothness : ρn/ρa = 1
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(c) White noise : ρn/ρa = 0.01

Figure 3.2: Illustration of the proposed method for SNR = −5 dB, ρa = 0.05 and different
noise smoothness degrees, ρn/ρa, equal to a) 15, b) 1, and c) 0.01. For each noise smoothness
degree, we have presented : I) an example of the recordings y(x, t). II) Actual gain ã(x) and
its estimation â(x). Grey shadow is the uncertainty. III) Oracle SNR(f∗) (3.9), estimated
SNR(f̂) (3.14c) and achieved SNR (3.23). IV) MI criterion [KSG08]. In all the plots, the
circles denote the three pre-selected sensors. The diamonds indicate the maximum of each
function.
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Now, we discuss the results obtained by this part of the experiments. Fig. 3.2-(a) cor-
responds to a difficult situation with SNR = −5 dB. Here, we consider a very smooth noise
setting ρn/ρa = 15, which can be seen in sub-figure I. In the third sub-figure III, it is seen
that the proposed criterion JE(x) (i.e. the estimated SNR from imperfect knowledge of ã(x))
has roughly the same behaviour than the oracle SNR (3.9), which requires perfect knowledge
of ã(x). The differences are explained by (3.21) and come from the estimation bias b(x) and
the uncertainty of the spatial gain. The effect of the bias and the uncertainty on JE(x) will
be more studied in subsection 3.4.3 (next subsection). Interestingly, the maximum value of
JE (3.14) is located in a range of high values for the actual SNR (3.23), thus leading to an
output SNR of about 45dB with 4 sensors while the output SNR with only the 3 pre-located
sensors is equal to 10dB. Moreover, it is worth noting that the achieved SNR with 4 sensors,
SNR(̂f), in orange, can be lower than the output SNR with only the 3 pre-located sensors
(e.g., for x = 0.88). This means that adding a sensor will not necessarily leads to a better
SNR but can deteriorate the quality of the extraction. This counter intuitive result can be
explained from the imperfect estimation â(x). In this case, based on an inappropriate model,
the extraction vector f̂(xK+1) which is based on K+1 sensors leads to a worse estimation ŝ(t)
than using only K sensors using f̂(xK). Finally, in the 4th sub-figure IV, we can clearly see
that the solution provided by the MI criterion is far from the optimal choice of sensor location
with respect to the output SNR. Also, as studied in [KSG08], in sub-figure IV, we can see that
regardless of the sensor recordings, the optimality criterion pushes the sensor location close
to the borders of the space at x = 1, and tries to keep the sensors as far as possible from each
other, which obviously does not necessarily provide the best source extraction. This result
remains intact for any other settings of the SNR and smoothness ratio between the noise and
the spatial gain (β =

ρn
ρa

) which will be studied in the following experiments. We note that

since in this experiment the new sensors are added one by one, the error covariance becomes
a scalar, and as such, the different optimality criteria are all the same, and being equal to the
error covariance.

Next, we switch to Fig. 3.2-(b) to examine the performance of the proposed criterion in a
more difficult situation where the smoothness of the noise signal is similar to the smoothness
of the spatial gain. So, in this figure, we have set ρn/ρa = 1, and as it is seen in sub-figure I,
the behaviour of the noise signal n(x, t) is quite similar to the behaviour of the signal a(x)s(t)

with regards to the smoothness. Therefore, because the SNR is also quite low (SNR=-5dB),
extracting the information of the source signal from the set of measurements becomes more
challenging. By looking at the results in the third sub-figure III, and comparing the behaviour
of the proposed criterion J(x) with the oracle SNR(f∗), we can see that the proposed criterion
interestingly follows the shape of the oracle and wherever SNR(f∗) has a peak, J(x) also
contains a peak close to it. Also, comparing J(x) with the true SNR based on estimated
extractor vector, i.e. SNR(f̂), we see that the maximum of the proposed criterion is quite
close to the maximum of the true SNR based on the estimated extractor vector, as well as
the oracle. This shows that even in a more difficult situation of the noise smoothness, the
proposed method is still powerful to select a position close to the optimal point. This is unlike
the solution obtained by the MI criterion which is far from the optimal answer. Comparing
the results of Fig. 3.2-(b)-III with the results of the smooth noise signal in Fig. 3.2-(a)-III,
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we see that the output SNR is significantly decreased due to the difficulty of the situation
concerning the smoothness of the noise. Also, again here we can see that by adding a sensor
in a noticeable portion of the spatial field, (e.g. 0.3 ≤ x ≤ 0.7) the SNR will be decreased due
to the reasons we mentioned before.

Finally, we repeat the experiments for an almost spatially white noise situation in Fig. 3.2-
(c). Interestingly, it can be seen that we have the same results as in the previous parts.
Moreover, in spite of having a very low SNR equal to -5dB, and a white noise, the proposed
method can still find the optimal point for the next sensor position.

To summarize, from Fig. 3.2, by comparing the results from top to bottom, we can conclude
that whenever the noise is significantly smoother than the spatial gain, i.e. ρn >> ρa, it is
possible to have a large amount of increase in the SNR. In contrast, whenever ρn ≈ ρa, i.e.
when the smoothness of the spatial gain is similar to that of the noise, adding sensor does not
provide a lot of increase in the SNR, and the next sensor will be located around argmaxx a(x).
In addition, we can see that by considering a white noise, i.e. ρn << ρa, the output SNR
obtained by the proposed criterion becomes better than the situation where ρn ≈ ρa. This
means that if the spatial gain and the noise are more different from each other in terms of the
smoothness, we will have a better result for source extraction. Finally, it is interesting to pay
attention to the behaviour of the JMI when the noise becomes very non-smooth. We can see
that in such a situation, JMI has almost a flat shape meaning that it is not useful to find the
best sensor location in the sense of increasing the output SNR.

Finally, in Fig. 3.3, we repeat the experiment for a better SNR condition by setting the
SNR equal to 0 dB. This figure also studies different smoothness degrees for the noise signal
setting ρn/ρa equal to 15, 1, and 0.01, and the results are reported in parts (a), (b), and
(c), respectively. From this figure, we can conclude the same results as in the Fig. 3.2, except
that we obtain a better output SNR by adding the new sensor. Specifically, it is interesting
to mention the spatially white noise situation in Fig. 3.3-(c), where the effect of the noise
in the measurements is decreased due to decreasing the power of noise signal, and we can
see in sub-figure I that the measurements better follow the shape of the source signal, i.e.
a(x) s(t). Therefore, the good result is that the output SNR is increased which can be seen
in sub-figure III. Furthermore, we note that in sub-figure III the new sensor location is very
close to the previous sensor, which means that somewhere close to the previous sensor we still
have important information which should be collected by a new sensor.

From Fig. 3.3, we can see that the weak point of the proposed method is that the suggested
criterion is not powerful to find the positions where placing new sensors may deteriorate the
extraction of the source and reduces the output SNR. To give an example, if we look at
Fig. 3.3-III, we can see that there are some regions where by adding a new sensor the SNR
decreases compared to the initial situation before adding the new sensors (the SNR at the
points shown by black circles). This is happening due to the highly uncertain knowledge as
well as the bias b(x) we have about the spatial gain at these positions. In the next chapter,
we will discuss more about this fact, and present a new method to deal with this issue.
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(a) Very smooth noise : ρn/ρa = 15.
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(b) Medium noise smoothness : ρn/ρa = 1
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(c) White noise : ρn/ρa = 0.01

Figure 3.3: The same illustration of the proposed method as in Fig. 3.2 except that the SNR
is equal to 0dB.
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3.4.3 The effect of bias and uncertainty on the proposed criterion

In Section 3.3, we explained that the uncertainty and the bias of the spatial gain can cause
the selected sensor location suggested by the proposed criterion JE(XM) (3.21a) does not
necessarily match the true optimal sensor location. In this section, we want to demonstrate
the effect of the bias Jb(XM) (3.21c) and the uncertainty Ju(XM) (3.21d) on the optimal
sensor location selected by our proposed criterion JE(XM). To this end, we have prepared
Fig.3.4. In this figure, the true value of the SNR with the perfect knowledge of the spatial
gain, i.e. J(XM) (3.21b), the bias Jb(XM), and the uncertainty Ju(XM) are, respectively,
shown in sub-figures (a), (b), and (c). Then, in sub-figure (d) we have demonstrated the
proposed criterion which includes the effect of the bias and the uncertainty, i.e. JE(XM) =

J(XM)+Jb(XM)+Ju(XM). Moreover, by ignoring the uncertainty of the spatial gain (setting
Ju(XM) = 0), the effect of the bias is presented in sub-figure (e), where we have plotted J(XM)

being added with Jb(XM) which is the influence of the bias. Finally, sub-figure (f) presents
the effect of uncertainty on the proposed criterion where we have plotted J(XM) being added
with Ju(XM), considering Jb(XM) = 0. In each sub-figure, the maximum of each function
is marked by a diamond. Here, we assume that the SNR of the observations is 0dB, and
ρn/ρa = 2 with ρa = ρma = 0.05. The variances of the source, the mean of the spatial gain,
the uncertainty and the bias are, respectively, set as σma = 0.15, σs = 1, σb = 0.2, σu = 0.2.
The size of the spatial grid is 300, with three initial sensors at indexes K = [50, 150, 250]T .

As it is seen in sub-figure (a), the maximum point suggested by the true value of the SNR is
at x = 0.42. Meanwhile, by applying the effect of the bias and the uncertainty in sub-figure (d),
this result is at x = 0.83 which is far from the optimal point. Also, by just considering the
influence of the bias in sub-figure (e), the suggested criterion is about x = 0.83, and we obtain
the maximum at x = 0.1 by looking at sub-figure (f) as the effect of the uncertainty.
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Figure 3.4: The effect of the bias and the uncertainty on the proposed criterion. In the
left column, from top to bottom, we separately demonstrate the true value of the SNR with
the perfect knowledge of the spatial gain, i.e. J(XM), the bias function Jb(XM), and the
uncertainty function Ju(XM). In the right column, the top sub-figure shows the proposed
criterion JE(XM) = J(XM) + Jb(XM) + Ju(XM), the middle one presents only the effect of
the bias on the proposed criterion, i.e. J(XM) + Jb(XM), and the last sub-figure shows the
effect of uncertainty by ignoring the effect of the bias, i.e. J(XM) + Ju(XM).
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3.4.4 Comparison with state of the art

In this part, firstly, the sensitivity of the methods to the smoothness of the noise relative
to the smoothness of the spatial gain, i.e. ρn/ρa are compared. In Fig. 3.5 the actual SNRs
are plotted according to different ratios ρn/ρa. In this experiment, a grid search method is
used : P = 200 linearly spaced possible sensor locations were tested between 0 and 1, with
three initial sensors arbitrary located at the set of indices K = {33, 100, 167}, corresponding
to the positions xK = [x33, x100, x167]T = [0.1608, 0.4975, 0.8342]T . To generate ã(x) and
its mean ma(x), we set ρa = ρma = 0.05 and σa = σma = 0.5. Also, we put σs = 1.

To set up the parameters of the noise n(x, t), we consider two different situations. In the
first one shown in Fig. 3.5-(a), we set σn such that the SNR (3.24) is equal to 3dB. In the
second case presented in Fig. 3.5-(b), we assume a more difficult situation by setting the power
parameter of the noise σn such that the SNR is equal to 0 dB. For each of these two cases,
we take into account different smoothness degrees for the noise compared to the smoothness
of the spatial gain, and we choose 35 different values for ρn/ρa, starting from a white noise
ρn/ρa = 0.01 to a very smooth noise ρn/ρa = 25. For each experiment, we generate 50 Monte
Carlo (MC) of the noise n(x, t) and the spatial gain ã(x).

From Fig. 3.5-(a), it can be concluded that the proposed method performs better in average
than the other methods in different smoothness situations. For instance, consider the point
where ρn/ρa = 3 ; the resulting SNR after adding one new sensor using the proposed method
is about 23dB, while the value of SNRs using MI and entropy are around 13dB. Note that
depending on the ratio ρn/ρa, the optimal location of the new sensor varies. We also mention
that for very small amounts of ρn/ρa, none of the compared methods provide a significant
improvement. Next, by looking at Fig. 3.5-(b), we can see that even in a more difficult situation
in terms of the SNR, the proposed method still outperforms the classical kriging methods.
However, this superiority is less than the previous situation due to the higher level of the
noise. Note that in sub-figure-a, the average standard error of the mean (SEM) for the average
SNR is 0.18, 0.38, and 0.31 for the proposed method, MI and entropy, respectively. Also, these
values for second case in sub-figure-b are equal to 0.23, 0.16, and 0.16, respectively. We recall
that the SEM is calculated as follows :

SEM =
SD√
NMC

(3.25)

where NMC = 50 is the number of MCMC, and SD is the standard deviation defined as

SD =

√√√√ 1

NMC − 1

NMC∑

i=1

(SNR− SNR)2 (3.26)

with SNR being the mean of the SNR.
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Figure 3.5: The dependency of the performance on the smoothness ratio between noise and
spatial gain

ρn
ρa

. In this figure, the average SEM for the proposed method, MI and entropy is,

respectively, equal to 0.18, 0.38, and 0.31 in part (a), and 0.23, 0.16, and 0.16 in part (b).
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In the second part of the simulations (Fig. 3.6), the efficiency of the proposed method to
choose the sensor locations is tested. To set up the simulations, we set the parameters as in
Fig. 3.5, except that we start with one initial sensor in the middle of the grid at x = 0.5, and
we set the ratio between the smoothness parameter of the noise and of the spatial gain to be
ρn/ρa = 0.01. We do our experiment for two different values of the SNR equal to 3dB and 0dB,
respectively, in sub-figures (a) and (b). A number of 50 data sets are also randomly generated
for each number of sensors. The sensor locations were chosen with a greedy approach : at each
iteration, a single new sensor is added to the previous set of sensors. Three different criteria are
compared to select the new sensor location : the proposed method, MI and entropy. Fig. 3.6
shows the actual output SNR (3.23) for each size of the set of sensors on the left column, and
the SEM (3.26) for the average SNR on the right column. From the results, we can see that
the performance of our proposed method is significantly better than the other two methods,
specially when the number of sensors is very limited. For instance, if a maximum number of 10
sensors can be used, by looking at Fig. 3.5-(a) we see that the results achieved by the proposed
method is about 11dB better than entropy and also 6dB better than MI. Also, to reach an
SNR of 15dB, the proposed criterion needs about 5 sensors, while 15 sensors are required using
the MI method and we need 30 sensors with the entropy criterion. This shows the efficiency
of the proposed approach to choose relevant sensor locations for source extraction. We can
have similar interpretation from Fig. 3.5-(b), and we can see that even in a harder situation
regarding the SNR, the proposed method keeps its significant superiority for sensor placement.
In both cases, we can see that the entropy criterion does not perform as well as MI and the
proposed criterion, and the results obtained by this criterion have a high SEM. We also note
that, for small number of sensors the proposed criterion has a better performance in terms
of SEM. However, MI outperforms our method in this regard by increasing the number of
sensors.
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Figure 3.6: Comparing the performance of the proposed method with entropy and MI. Left :
improvement of the average SNR for 50 MC versus the number of selected sensors using greedy
method. Right : The standard error of the mean (SEM) for the average output SNR versus
the number of selected sensor.
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3.5 Conclusion

In this chapter we studied the problem of optimal sensor placement for signal extraction
from noisy underdetermined measurements collected by a limited number of sensors. Based
on a linear estimator to extract the source of interest, the average output SNR of the linearly
extracted signal has been proposed as a quality criterion to select sensor locations. Such a
criterion takes into account the uncertainty on the spatial gain of the source to be extrac-
ted, and it provides a suitable solution for the optimal sensor placement problem. Numerical
simulations have shown the superior efficiency and accuracy of the proposed method in the
source extraction problem when compared to the classical sensor placement criteria such as
entropy and mutual information. This superiority is proven from different aspects, such as the
smoothness conditions of the noise, and different SNR situations.

As we mentioned in this chapter, our proposed method is not able to retrieve the positions
where placing new sensors may deteriorate the extraction of the source and reduces the output
SNR due to the highly uncertain knowledge and the bias b(x). In the next chapter, we will go
into a more in-depth analysis of the influence of modeling parameters, and we will introduce
a new robust algorithm based on the pdf of the SNR.
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In the previous chapter, by considering the noisy sensor measurements model

y(x, t) = a(x)s(t) + n(x, t),

and assuming a GP model for the spatial gain a(x) and for the additive noise n(x, t), the
output SNR of the estimated source signal was derived as a function of a(x) and of the
sensor locations XM, by using a linear source extraction approach. To model the imperfect
knowledge on the spatial gain, a stochastic model on the spatial gain a(x) is considered.
As a consequence, the output SNR is also stochastic. So, we suggested the average SNR as a
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criterion to solve the problem of optimal sensor placement for source extraction. The suggested
criterion significantly outperforms kriging-based methods in terms of the SNR. Although the
average SNR takes into account the uncertainty in the gains, it may not lead to a robust
sensor placement criterion, since increased levels of uncertainty on the gains affect not only
the average SNR but also the dispersion of its distribution. As a result, the criterion can
suggest some locations which have high values for the average SNR, but also high dispersion,
leading to an actual value of the SNR that can be much lower than its average. In this case,
the selected sensor positions may not improve the SNR, and they may even decrease the SNR.

In this chapter, we propose to extend the idea presented in the previous chapter to take
into account the robustness issue presented above. A more general criterion, based on the
probability that the SNR exceeds a fixed threshold is put forward. Since the evaluation of
this criterion requires the pdf of the SNR, we indicate how this pdf can be evaluated using
the same GP assumption on the spatial gain. Moreover, when we choose the sensor positions
in a sequential fashion, we show that the criterion can be evaluated analytically. Simulation
results obtained with the sequential approach show that the threshold in the probability-based
criterion can be adjusted to a trade-off between having a maximum increase in the SNR and
being robust to a possible decrease in the SNR due to uncertainty. Furthermore, the results
confirm the superior robustness of this approach compared to the average SNR criterion.

The rest of this chapter is organized as follows. In Section 4.1, we present the problem
statement. In Section 4.2, the proposed criterion for sensor placement based on the pdf of the
SNR is introduced. Section 4.3 presents how the criterion becomes simpler with the sequential
approach. In Section 4.4, the simulation results are presented. Then, in Section 4.5, some more
numerical tools for a better evaluation of different methods will be presented. Finally, Section
4.6 concludes this chapter.

4.1 Problem statement

In this section, we will present the problem that we want to address. Assume thatM sensors
are going to be used at locations XM = [x1,x2, . . . ,xM ]T to extract a source signal s(t).
The set of noisy measurements related to each sensor is denoted by the vector y(XM, t) =

[y(x1, t), y(x2, t), . . . , y(xM , t)]T described through the following model

y(XM, t) = a(XM)s(t) + n(XM, t), (4.1)

where n(XM, t) = [n(x1, t), n(x2, t), . . . , n(xM , t)]T and a(XM) = [a(x1), a(x2), . . . , a(xM )]T

are, respectively, the corresponding noise and spatial gain vectors. In the previous chapter
we showed that by considering the observation model in (4.1), and using a linear estimator
described by the extractor vector f(XM) ∈ RM , the extracted source signal ŝ(t) is given by

ŝ(t) = f(XM)Ty(XM, t) = f(XM)Ta(XM)s(t) + f(XM)Tn(XM, t). (4.2)
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Also, we showed from above, the SNR of the estimation of s(t) is derived as

SNR(f(XM)|XM) =
Et
[(
f(XM)Ta(XM)s(t)

)2]

Et
[(
f(XM)Tn(XM, t)

)2] =
σ2
s f(XM)Ta(XM)a(XM)T f(XM)

f(XM)TCn(XM,XM)f(XM)
,

(4.3)

where Et[·] stands for the expectation over time, and the signal time samples are tem-
porally zero-mean, independent and identically distributed (iid) with σ2

s = Et[s(t)2] and
Cn(XM,XM) = Et[n(XM, t)nT (XM, t)]. Accordingly, the linear estimator that maximizes
the SNR is

f∗(XM) = Cn(XM,XM)−1a(XM) (4.4)

and the corresponding SNR is given by

SNR(f∗(XM)|XM) = σ2
s a(XM)TCn(XM,XM)−1a(XM). (4.5)

Now, by treating the resulting output SNR in (4.5) as a function of sensor locations XM and
maximizing it over XM, we end up with the optimal solution for sensor placement in terms
of the best SNR. This solution implicitly assumes a perfect knowledge of spatial gains a(xi),
i ∈ {1, 2, . . . , M}. However, such a perfect knowledge is not always available. To overcome
this issue, a GP with mean ma(x) and covariance function Ca(x,x′) is considered to model
the spatial gain as a(x) :

a(x) ∼ GP
(
ma(x), Ca(x,x′)

)
. (4.6)

Consequently, the randomness of a(x) leads to a stochastic SNR :

SNR(f ∗(XM)|XM) = σ2
sa(XM)TR(XM,XM)a(XM), (4.7)

where f ∗(XM) = Cn(XM,XM)−1a(XM) is the corresponding random extractor vector, and
assuming the noise covariance matrix to be invertible, we have defined

R(XM,XM) , Cn(XM,XM)−1. (4.8)

To deal with this stochastic representation of the SNR, in Chapter 3 we suggested to estimate
the SNR with its mean

JE(XM) =E
{
a(XM)TCn(XM,XM)−1a(XM)

}

=ma(XM)TCn(XM,XM)−1ma(XM) + Tr
[
Cn(XM,XM)−1Ca(XM, XM)

]
.

However, in a very uncertain condition where the covariance of the spatial gain Ca(x,x′)
takes large values compared to its mean ma(x), it is possible to choose sensor positions where
the mean of the SNR is quite large, but at the same time we have a high dispersion causing
the actual SNR to be much smaller. Therefore, to target the SNR in (4.5), we need to use a
quantitative statistical measure of the SNR distribution which is robust against the uncertainty
in the spatial gain model (4.6), i.e. large values of Ca(x,x′). This will be presented in the next
part.
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Remark 1
If we have a prior information on a(XK) = [a(x1), a(x2), . . . , a(xK)]T , for example if we have
previously placed the sensors at these positions and measured the gains, then the prior (4.6) can
be updated to include this information, simply by conditioning the GP on the measurements of
the gains. As explained in Chapter 2.1, the conditioned GP is still a GP but with conditioned
mean and covariance functions presented in (2.16) and (2.18), respectively [RW06].

4.2 Proposed criterion

Since the pdf of a random variable contains all the information about it, here, by computing
the pdf of the SNR, we are able to define different efficient statistical criteria. Therefore, first,
we attempt to derive the pdf of the SNR given in (4.7). Then, based on the obtained pdf, we
present a robust criterion for sensor placement.

To simplify notation, we define the random variable

w(XM) , 1

σ2
s

SNR(f ∗(XM)|XM) = a(XM)TCn(XM,XM)−1a(XM). (4.9)

Now, in order to find the distribution of w(XM), we propose the following :

Proposition 1 (Distribution of w(XM))
If the spatial gain a(x) follows the GP model a(x) ∼ GP

(
ma(x), Ca(x, x′)

)
, then w(XM) is

the weighted sum of M independent random variables as follows :

w(XM) =

M∑

i=1

diy2
i , (4.10)

where yi’s are independent normally distributed random variables yi ∼ N
(
myi , 1

)
, with the

mean
myi = uTi C

a(XM,XM)−
1
2ma(XM) (4.11)

and, di’s and ui’s are, respectively, the eigenvalues and eigenvectors of the matrix A defined
as follows :

A , Ca(XM,XM)
1
2R(XM,XM)Ca(XM,XM)

1
2 , (4.12)

and ma(XM) = [ma(x1), ma(x2), . . . , ma(xM)]T .

To prove the above proposition, we first need to present the following lemma.

Lemma 1
Let q be a normally distributed random vector with zero mean and an identity covariance
matrix IM : q ∼ N (0, IM ). Now, we define the random variable yi as follows :

yi , uTi (q + m′(XM)), (4.13)
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where
m′(XM) = Ca(XM,XM)−

1
2ma(XM). (4.14)

Then, it is straightforward to show that for any i 6= j ∈ {1, 2, . . . ,M}, yi and yj are uncorre-
lated :

Corr(yi, yj) =
E
{

(yi − E{yi})(yj − E{yj})
}

√
E{y2

i } − E{yi}2
√

E{y2
j} − E{yj}2

= 0. (4.15)

Taking into account that E{q} = 0, from (4.13) we have

E{yi} = E{uTi (q + m′(XM))} = uTi E{q}+ uTi m
′(XM) = uTi m

′(XM), (4.16)

and similarly E{yj} = uTj m
′(XM). So, now we have

E
{

(yi − E{yi})(yj − E{yj})
}

=

E
{[

uTi (q + m′(XM))− uTi m
′(XM)

][
uTj (q + m′(XM))− uTj m

′(XM)
]}

=

E
{
uTi quTj q

}
= E

{
uTi qqTuj

}
= uTi E

{
qqT

}
uj = uTi Iuj = uTi uj = 0. (4.17)

Note that, since ui and uj are the eigenvectors of A (4.12), and A is symmetric, they are
orthogonal and uTi uj = 0. Now, by replacing (4.17) in the numerator of (4.15), we can conclude
that Corr(yi, yj) = 0, and thus, yi and yj are uncorrelated.

On the other hand, yi and yj are jointly normally distributed. Therefore, yi and yj are
independent. Moreover, as long as the Jacobian of a non-linear transformation h : RM −→ RM ′

is diagonal, the non-linear functions will not affect the independence of the random variables.
So, by defining h(yi) , diy2

i , since the Jacobian matrix of the function h over the independent
random variables yi, i ∈ {1, 2, . . . ,M} is diagonal, it can be concluded that for any i 6= j ∈
{1, 2, . . . ,M}, Γi , diy2

i and Γj , djy2
j are also independent. �

Proof 1 (proof of Proposition 1)
From (4.13), the squared form of yi is as follows :

y2
i =[q + m′(XM)]TuiuTi [q + m′(XM)]

=qTuiuTi q + 2(m′(XM))TuiuTi q + (m′(XM))TuiuTi (m′(XM)).

According to the above equation, we have the following :
M∑

i=1

diy2
i =qT

[ M∑

i=1

(diuiuTi )

]
q + 2(m′(XM))T

[ M∑

i=1

(diuiuTi )

]
q

+ (m′(XM))T
[ M∑

i=1

(diuiuTi )

]
m′(XM).

Since di’s and ui’s are the eigenvalues and eigenvectors of A, it yields
∑M

i=1(diuiuTi ) = A.
So, we have

M∑

i=1

diy2
i = qTAq + 2m′(XM)TAq + m′(XM)TA(m′(XM)). (4.18)
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By replacing (4.14) and (4.12) in (4.18), we obtain

M∑

i=1

diy2
i =

[
ma(XM) + Ca(XM,XM)

1
2q
]T

R(XM,XM)
[
ma(XM) + Ca(XM,XM)

1
2q
]
.

Since q is a normally distributed random vector with zero mean and an identity covariance
matrix, and also because ma(XM) and Ca(XM,XM) are the mean vector and covariance ma-
trix of the model of the spatial gain, respectively, we conclude that ma(XM)+Ca(XM,XM)

1
2q

follows the same distribution as a(XM). Therefore, we have

M∑

i=1

diy2
i = a(XM)TR(XM,XM)a(XM)T =

1

σ2
s

SNR(f∗(XM)|XM) = w(XM). �

Lemma 2
Since yi is a normally distributed scalar with non-zero mean myi and variance one, its squared
form y2

i follows a non-central chi-squared distribution with the number of degrees of freedom
ki = 1, and non-centrality parameter λi = m2

yi [AS72]. So, the pdf of the random variable
vi , y2

i becomes

gvi(vi; ki, λi) =
1

2
exp−

(vi+λi)

2

(
vi
λi

)(
ki
4
− 1

2
)

I ki
2
−1

(
√
λivi), (4.19)

where I·(·) is the modified Bessel function of the first kind. Now, by defining Γi = divi to be
the scaled form of the random variable vi with the positive scale factor di, the distribution of
Γi becomes as follows :

gΓi(γi) =
1

di
gvi(

γi
di

; ki, λi), (4.20)

with gvi(.) being the pdf of the random variable vi = y2
i with non-central chi-squared distribution

defined in (4.19). �

Proposition 2 (Distribution of w(XM) = SNR(f ∗(XM)|XM)/σ2
s)

From Lemma 1 and Lemma 2, it can be concluded that w(XM) = SNR(f∗(XM)|XM)/σ2
s is

the sum of M independent random variables Γi each having a pdf defined in (4.20). Therefore,
due to independence, the pdf of the SNR is given by the convolution product, denoted by ∗,
between the pdf of M random variables Γi :

gw(w) =gΓ1(w) ∗ gΓ2(w) ∗ · · · ∗ gΓM (w)

=
1

∏M
i=1 di

gv1(
w

d1
; k1, λ1) ∗ gv2(

w

d2
; k2, λ2) ∗ · · · ∗ gvM (

w

dM
; kM , λM ). � (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ∗(XM)|XM)/σ2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
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Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. To achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted θ, and we introduce the criterion JP (XM, θ)
which is based on the cumulative distribution function (cdf) of the SNR :

JP (XM, θ) = Pr(w(XM) > θ) = 1−Gw(θ), (4.22)

where Gw(·) denotes the cdf of the SNR/σ2
s (i.e. w(XM)) conditioned on the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(θ;k,Λ) =
1

∏M
i=2 di

×Gv1

( θ
d1

; k1, λ1

)
∗ gv2

( θ
d2

; k2, λ2

)
∗ · · · ∗ gvM

( θ

dM
; kM , λM

)
, (4.23)

where k = {k1, k2, . . . , kM}, Λ = {λ1, λ2, . . . , λM}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.23) is presented in Appendix A. Note that from Lemma 2 we also
have :

Gv1(v1; k1, λ1) = 1−Q k1
2

(
√
λ1,
√
v1), (4.24)

where λi and ki are defined in Lemma 2, and Q is the Marcum-Q-function [NA75]. So, based
on the criterion (4.22), we solve the following problem for sensor placement :

X̂M = argmax
XM

JP (XM, θ), (4.25)

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value α of SNR/σ2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the sensor
positions matrix XM maximizing

JML(XM, α) = gw(α). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.22).

The advantage of the criterion (4.22) is that the free parameter θ can be used to control
the risk we want to take when placing new sensors. The effect of θ is depicted in Fig. 4.1. In
this figure, we have plotted the pdf of the SNR, i.e. gw(w) (4.21), in two example positions : x1

which has a low variance, and x2 which has a large variance. Then, we considered two different
cases. In the first case, the parameter θ is set to a value equal to 10. In the second case, we
reduced the parameter θ to a smaller value equal to 5. The green shadow shows the cdf of the
SNR (our proposed criterion) which depends on the value we choose for the parameter θ. From
this figure, we can see that by increasing θ to sufficiently high values (sub-figures 4.1a and
4.1b), the upper tail of the output SNR will be compared for two different positions, forcing
the criterion to be high for positions leading to a high SNR but which are conservative (having
smaller variance). In this case, the positions leading to very high average SNR but with large
dispersion will be discarded. On the contrary, by reducing the parameter θ to a sufficiently low
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵

of SNR/�2
s , then the maximum likelihood can also be used as a sensor placement criterion.

In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵

of SNR/�2
s , then the maximum likelihood can also be used as a sensor placement criterion.

In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵

of SNR/�2
s , then the maximum likelihood can also be used as a sensor placement criterion.

In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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by ⇤, between the pdf of M random variables �i :

gw(w) = g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.16)

Proposition 2 (Distribution of the SNR)
Now, by knowing the pdf of the SNR, it is possible to define different criteria. To have an
efficient criterion, it is necessary to consider two important properties : first, the criterion has
to suggest positions providing maximum output SNR. Second, the criterion should be robust
against the uncertainty on the gains, that is, it should avoid positions that have a non-negligible
probability of generating a small SNR. So, to achieve these two goals, we propose to search
for a set of positions that maximizes the probability of the SNR to be greater than a threshold
denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.17)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.18)

JP (x, ✓)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.16) the cdf becomes as follows :

Gw(✓; k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.19)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). Note that from Remark 2 we also have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.20)

where �i and ki are defined in (4.14), and Q is the Marcum-Q-function [NA75]. ⌅

Remark 2
(Links with maximum likelihood) It is worth mentioning that if we consider a target value ↵

of SNR/�2
s , then the maximum likelihood can also be used as a sensor placement criterion.

In this case, we look for the set XM maximizing

JML(XM,↵) = gw(↵). (4.21)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.18).
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due to independence, the pdf of the SNR is given by the convolution product, denoted by ⇤,
between the pdf of M random variables �i :

gw(w) =g�1(w) ⇤ g�2(w) ⇤ · · · ⇤ g�M
(w)

=
1

QM
i=1 di

gv1(
w

d1
; k1,�1) ⇤ gv2(

w

d2
; k2,�2) ⇤ · · · ⇤ gvM (

w

dM
; kM ,�M ). (4.21)

Now, by knowing the pdf of w(XM) = SNR(f ⇤(XM)|XM)/�2
s , it is possible to define

different criteria. To have an efficient criterion, it is necessary to consider two important
properties : first, the criterion has to suggest positions providing maximum output SNR.
Second, the criterion should be robust against the uncertainty on the gains, that is, it should
avoid positions that have a non-negligible probability of generating a small SNR. So, to achieve
these two goals, we propose to search for a set of positions that maximizes the probability of
the SNR to be greater than a threshold denoted ✓. This leads to the following problem :

X̂M = argmax
XM

JP (XM, ✓), (4.22)

where the criterion JP (XM, ✓) is based on the cumulative distribution function (cdf) of the
SNR :

JP (XM, ✓) = Pr(w(XM) > ✓) = 1�Gw(✓), (4.23)

where Gw(·) represents the cdf of the SNR/�2
s (i.e. w(XM)) conditioned to the sensors at

positions XM. By knowing the pdf of w(XM), from (4.21) the cdf becomes as follows :

Gw(✓;k,⇤) =
1

QM
i=1 di

⇥Gv1

⇣ ✓

d1
; k1,�1

⌘
⇤ gv2

⇣ ✓

d2
; k2,�2

⌘
⇤ · · · ⇤ gvM

⇣ ✓

dM
; kM ,�M

⌘
, (4.24)

where k = {k1, k2, . . . , kM}, ⇤ = {�1,�2, . . . ,�M}, and Gv1(·) is the corresponding cdf of
gv1(·). The proof of (4.49) is presented in Appendix A. Note that from Remark 2 we also
have :

Gv1(v1; k1,�1) = 1�Q k1
2

(
p
�1,
p

v1), (4.25)

where �i and ki are defined in (4.44), and Q is the Marcum-Q-function [NA75].

Remark 2 (Links with maximum likelihood)
It is worth mentioning that if we consider a target value ↵ of SNR/�2

s , then the maximum
likelihood can also be used as a sensor placement criterion. In this case, we look for the set
XM maximizing

JML(XM,↵) = gw(↵). (4.26)

However, this criterion does not have an intuitive interpretation regarding robustness and
maximization of SNR as (4.23).
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Conclusions and perspectives

JP (x1, ✓)

JP (x2, ✓)

Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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(d) Large variance

Figure 4.1: The effect of θ on the cdf of the SNR (the proposed criterion JP (x, θ)). a) In
the case 1 we see that increasing θ forces the criterion to be high for positions leading to a
high SNR but which are conservative (having low variance). b) In the case 2 we see that by
reducing the parameter θ most of the positions will have similar criterion values closed to 1,
and consequently, risky sensor positions with a very large average SNR, but at the same time,
a large uncertainty, will not be discarded.

value (sub-figures 4.1c and 4.1d), most of the positions will have similar criterion values close
to 1 (the green shadows), and, as a consequence, risky sensor positions (the positions with
large variance) leading to a very high average SNR values will not be discarded. We note that
this result is valid if we consider that θ is always smaller than the median θmedian

1, and if we
set θ > θmedian the results are in opposite. So, unlike maximum likelihood, with this criterion,
depending on the application, we can make a trade-off between achieving a sufficiently high
SNR and reducing the risk that the true output SNR will be much lower than expected. We
note that, in Fig.4.1, we have considered that the pdf has the same mean equal to 15 at all the
positions. However, this does not hold in practice, and the pdf can take different mean values
at different positions. On the other hand, selecting the parameter θ depends on the mean of

1. The median of a population is the value where at least half of the population is less than this value.
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the pdf. This means that for different positions, different values for θ should be considered
based on the mean of the SNR at the corresponding positions. To solve this difficulty, one can
shift the pdf of the SNR to its mean at each position, and then, set a fixed threshold for all
the shifted pdfs.

4.3 Sequential sensor placement

In practice, to optimize the criterion (4.22), since there is no evidence that this criterion is
neither convex nor monomodal, a grid search is used. We are thus looking for the best subset
XM from a spatial grid of total P positions XP to place M sensors such that our proposed
criterion in (4.22) is maximized. The optimal solution to this problem requires a combinatorial
search over P !

M !(P−M)! possibilities. This search has a high computational cost, especially if the
grid is very tight, i.e. when P is large. Therefore, it is essential to provide a less costly solution.

In this section, we present two solutions that reduce the complexity. One solution is based
on a greedy method for breaking the underlying maximization problem into smaller problems.
The second solution follows the same greedy approach, but it exploits information on the
spatial gain that may be available when the smaller sensor placement problems are solved
sequentially.

4.3.1 Greedy method

One approach to reduce the computational complexity of the combinatorial search is to
use a greedy method. In this approach, we start from an empty set and iteratively add N < M

sensors such that at each prediction, the underlying criterion becomes maximum for the totally
selected positions up to each iteration. Assume that K sensors have already been located at
XK and we want to add the next N sensors at XN such that K +N is smaller than the total
number of sensors M . Among all the possibilities for the N new sensors, we search for the
subset XN such that XM = {XK ∪ XN} maximizes (4.22). This approach is presented in
Algorithm (1). Since at each iteration N < M , the computational complexity will be reduced
compared with a direct search for XM. However, such complexity reduction comes with the
cost of a possible sub-optimality of the chosen sensor positions.

4.3.2 Sequential approach

When breaking the larger search for the M optimal positions into a sequential search
for N positions, we may be interested in using the extraction system with the new sensors,
prior to choosing and placing the next N sensors. For instance, when we start with some
initial sensors at positions XK, we consider an approximation for the spatial gain based on the
observations obtained by the sensors at XK. Then, by adding the new N sensors and using
the information obtained by the new measurements, we can apply some methods such as
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Algorithm 1 Greedy method
1: Inputs : K = 0, XK = ∅
2: At each iteration : prediction of N new sensors positions
3: for j = 1, 2, · · · ,M do
4: X̂N = argmaxXN JP (XN ∪XK; θ)

5: XK ←− XN ∪XK
6: end for
7: XM ←− XK
8: Output : XM

independent component analysis (ICA) [Com94], to update the value of the spatial gains, and
have a better estimation of it. In such a case, it is possible to use the available measurements
not only to extract the signal but also to obtain new information on the spatial gains. If such
information can be retrieved, then it can be used to reduce the uncertainty on a(x) and, as a
consequence, to reduce the uncertainty on the SNR for the next N sensors to be placed. Note
that this sequential approach is different from the greedy method, whose only objective is to
iteratively maximize the criterion and not to retrieve any other useful information that may
reduce the uncertainty. This approach is presented in Algorithm (2).

In practice, information on the spatial gains may be obtained either if a ground truth
signal is available [SJ+18], or with blind signal processing techniques such as ICA [Com94]
or sparse component analysis (SCA) [ZP01]. In the following, we suppose that one of these
approaches is used and that the new information available on the gain is equivalent to the
noisy measurements of it, denoted z(XK) = [z(x1), z(x2), . . . , z(xK)]T , which is obtained at
the previously placed sensor positions XK :

z(XK) = a(XK) + v(XK), (4.27)

where a(XK) is considered to be the true value of the spatial gain at the preselected posi-
tions XK, and v(x) is a zero mean Gaussian process independent of the measurement noise
n(x, t), with the covariance function Cv(x,x′). So, z(x) ∼ GP

(
a(x), Cv(x,x′)

)
is an unbiased

estimation of the spatial gain a(x).

Once we placed the XK sensors and measured z(XK), we can update the criterion for
placing the new N sensors by conditioning the gain on z(XK). The gain vector can then be
written as a(XM)T =

[
z(XK)T a(XN )T

]
, where z(XK) are the estimated gains for which we

have measurements, a(XN ) is the random vector corresponding to the spatial gains at the
candidate positions XN , and both are conditioned on z(XK). As mentioned in Remark 1,
since both the gains and z(XK) are Gaussian, the conditioned gains are Gaussian, too, with
mean and covariance given by [RW06]

ma
(
XM|z(XK)

)
= E

{
a(XM)|z(XK)

}

= ma(XM) + Ca(XM,XK)
[
Ca(XK,XK) + Cv(XK,XK)

]−1[
z(XK)−ma(XK)

]
, (4.28)
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Algorithm 2 Sequential approach
1: Inputs : K = 0, XK = ∅
2: At each iteration :
3: for j = 1, 2, · · · ,M do
4: Estimation of the spatial gain : a(XK) −→ z(XK)

5: prediction of N new sensors positions : X̂N = argmaxXN JP (XN ∪XK; θ|z(XK))

6: XK ←− XN ∪XK
7: end for
8: XM ←− XK
9: Output : XM

and

Ca(XM,XM|z(XK)) = E

{[
a(XM)−ma

(
XM|z(XK)

)][
a(XM)−ma

(
XM|z(XK)

)]T
}

=Ca(XM,XM)−Ca(XM,XK)
[
Ca(XK,XK) + Cv(XK,XK)

]−1
Ca(XM,XK)T , (4.29)

where Ca(XM,XK) and Ca(XK,XK) are blocks of the partitioned covariance matrix

Ca(XM,XM) =
[
Ca(XM,XK) Ca(XM,XN )

]
=

[
Ca(XK,XK) Ca(XK,XN )

Ca(XK,XN )T Ca(XN ,XN )

]
.

(4.30)

The estimated SNR, i.e. ŜNR(f̂ (XN )|XK, z(XK)), is similar to (4.7), but, sinceXK is fixed,
it is now conditioned on z(XK) and also it is a function of XN only. As a(XM) is Gaussian,
the distribution of w(XN |XK) , (1/σ2

s)ŜNR(f̂ (XN )|XK, z(XK)) can be obtained in a similar
way as presented in Subsection 4.2, equation (2). With the distribution of w(XN |XK), we can
modify the criterion (4.22) to have the following robust sequential sensor placement criterion :

JP (XN , θ|z(XK)) = Pr(w(XN |XK) > θ) = 1−Gw(XN |XK)(θ). (4.31)

In the next section, by assuming a perfect knowledge on the spatial gain, we will show how
the distribution of w(XN |XK) can be derived.

4.3.3 Perfect gain information

In this section by assuming a perfect knowledge on the spatial gain, we derive the distribu-
tion of w(XN |XK). If the information on the gain is assumed to be perfectly known at sensor
locations XK, that is

z(XK) = a(XK),
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then using (4.9) we have

1

σ2
s

ŜNR
(
f̂ (XN )|XK, z(XK) = a(XK)

)
(4.32)

=

[
a(XK)

a(XN )

]T [
R(XK,XK) R(XK,XN )

R(XK,XN )T R(XN ,XN )

] [
a(XK)

a(XN )

]

= a(XK)TR(XK,XK)a(XK) + 2a(XK)TR(XK,XN )a(XN ) + a(XN )TR(XN ,XN ), a(XN ).

where

R(XM,XM) =

[
R(XK,XK) R(XK,XN )

R(XK,XN )T R(XN ,XN )

]
.

The conditioned random vector a(XN )|z(XN ) is also Gaussian whose mean ma(XN |XK)

and covariance Ca(XN ,XN |XK) can be obtained, respectively, from (4.28) and (4.29) by
setting the noise covariance equal to zero, i.e. Cv(XK,XK) = 0. They are given by

ma(XN |XK) = E
{
a(XN )|a(XK) = z(XK)

}
(4.33)

= ma(XN ) + Ca(XK,XN )TCa(XK,XK)−1
[
a(XK)−m(XK)

]
. (4.34)

and

Ca(XN ,XN |XK) =E
{[

a(XN )ma(XN |XK)
][

a(XN )−ma(XN |XK)
]T |a(XK) = z(XK)

}

=Ca(XN ,XN )−Ca(XN ,XK)Ca(XK,XK)−1Ca(XN ,XK)T . (4.35)

Since by definition (4.8), R(XN ,XN ) is invertible, then, by factorizing (4.33), we have

ŜNR
(
f̂ (XN )|XK, a(XK) = z(XK)

)
= σ2

s×
{ [

a(XK)T
(
R(XK,XK)−R(XK,XN )R(XN ,XN )−1R(XK,XN )T

)
a(XK)

]

+

[(
a(XN ) + R(XN ,XN )−1R(XN ,XK)a(XK)

)T
×

R(XN ,XN )
(
a(XN ) + R(XN ,XN )−1R(XN ,XK)a(XK)

)] }
. (4.36)

Note that the second term is a quadratic form of a Gaussian vector, while the first term
is deterministic. Therefore, the random variable

w(XN |XK) , 1

σ2
s

ŜNR
(
f̂ (XN )|XK,a(XK) = z(XK)

)
(4.37)

− a(XK)T
(
R(XK,XK)−R(XK,XN )R(XN ,XN )−1R(XK,XN )T

)
a(XK)

has a distribution that can be obtained as described in Subsection 4.2. So, we have the following
proposition.
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Proposition 3 (Distribution of w(XN |XK))
If the spatial gain a(x) follows the GP model a(x) ∼ GP

(
ma(x), Ca(x, x′)

)
, then, we can show

that w(XN |XK) is a weighted sum of N independent random variables as follows 2 :

w(XN |XK) =
N∑

i=1

diy2
i , (4.38)

where yi’s are independent normally distributed random variables yi ∼ N
(
myi , 1

)
, with the

mean
myi = uTi C

a(XN ,XN |XK)−
1
2ma(XN |XK) (4.39)

and, di’s and ui’s are, respectively, the eigenvalues and eigenvectors of the matrix A defined
as follows :

A , Ca(XN ,XN |XK)
1
2R(XN ,XN )Ca(XN ,XN |XK)

1
2 . (4.40)

The conditional mean of the spatial gain ma(XN |XK), and its conditional covariance
Ca(XN ,XN |XK) are, respectively, presented in (4.34) and (4.35).

Since yi is a normally distributed scalar with non-zero mean myi (4.39) and variance one,
its squared form y2

i follows a non-central chi-squared distribution with the number of degrees
of freedom ki = 1, and non-centrality parameter λi = m2

yi . So, the pdf of the random variable
vi , y2

i will be similar to (4.19) with the difference that here ui and di are, respectively,
the eigenvectors and eigenvalues of (4.40), and λi = m2

yi where myi is the conditional mean
presented in (4.39). So, by defining Γi = divi, the distribution of Γi will be as in (4.20). On
the other hand, similar to Lemma 1 we can show that for any i 6= j ∈ {1, 2, . . . , N}, Γi , diy2

i

and Γj , djy2
j are independent. Therefore, due to independence, the pdf of the SNR is given

by the convolution product, denoted by ∗, between the pdf of N random variables Γi :

gw(w) = gΓ1(w) ∗ gΓ2(w) ∗ · · · ∗ gΓN (w)

=
1

∏N
i=1 di

gv1(
w

d1
; k1, λ1) ∗ gv2(

w

d2
; k2, λ2) ∗ · · · ∗ gvN (

w

dN
; kN , λN ). (4.41)

Now, by knowing the pdf of w(XN |XK) = SNR(f ∗(XN )|XK)/σ2
s , it is possible to redefine

our proposed criteria :
X̂N = argmax

XN
JP (XN , θ|XK), (4.42)

where the criterion JP (XN , θ|XK) is based on the cumulative distribution function (cdf) of
w(XN |XK) (and equivalently the cdf of SNR(f ∗(XN )|XK)/σ2

s ) :

JP (XN , θ|XK) = Pr(w(XN |XK) > θ) = 1−Gw(XN |XK)(θ), (4.43)

in whichGw(·) represents the cdf of w(XN |XK). By knowing the pdf of w(XN |XK), from (4.41)
the cdf becomes as follows :

Gw(XN |XK)(θ;k,Λ) =
1

∏N
i=1 di

×Gv1

( θ
d1

; k1, λ1

)
∗gv2

( θ
d2

; k2, λ2

)
∗· · ·∗gvN

( θ

dN
; kN , λN

)
,

(4.44)

2. The proof is similar to the proof of proposition 1.
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where k = {k1, k2, . . . , kN}, Λ = {λ1, λ2, . . . , λN}, and Gv1(·) is the corresponding cdf of
gv1(·) (4.24).

So, by having the cdf of w(XN |XK), the criterion (4.43) can be used in Algorithm 2 to
sequentially add new sensors.

4.3.4 Adding one sensor at a time under the perfect gain information set-
ting

A special case for which JP
(
XN , θ|z(XK) = a(XK)

)
has a known analytical form is when

we add new sensors one by one, i.e. N = 1. In this case, a(xN ) is a scalar random variable and
both R(xN ,xN ) and Ca(xN |XK) are also scalars. Therefore, we can rewrite (4.36) as follows

ŜNR
(
f̂ (xN )|XK, a(XK)

)
= σ2

s ×
[
R(xN ,xN )

(
a(xN ) +

R(xN ,XK)a(XK)

R(xN ,xN )

)2

+ a(XK)T
(
R(XK,XK)− R(XK,xN )R(XK,xN )T

RNN

)
a(XK)

]
.

If we define
q(xN ) , 1√

Ca(xN |XK)

(
a(xN ) +

R(xN ,XK)a(XK)

R(xN ,xN )

)
,

then

ŜNR(f̂ (xN )|XK,a(XK)) = σ2
s ×

[
R(xN ,xN )Ca(xN |XK)q(xN )2 (4.45)

+ a(XK)T
(
R(XK,XK)− R(XK,xN )R(XK,xN )T

R(xN ,xN )

)
a(XK)

]
.

From the Gaussian assumption, we have q(xN ) ∼ N
(
mq(xN ), σq(xN )2

)
, where σq(xN )2 = 1,

and
mq(xN ) =

1√
Ca(xN |XK)

(
ma(xN |XK) +

R(xN ,XK)a(XK)

R(xN ,xN )

)
.

Therefore, it can be concluded that q(xN )2 has a non-central chi-squared distribution as
q(xN )2 ∼ χ2(1, λ), with degree of freedom k = 1 and non-centrality parameter

λ = mq(xN ) =
1√

Ca(xN |XK)

(
ma(xN |XK) +

R(xN ,XK)a(XK)

R(xN ,xN )

)
.

Using expression (4.45) and (4.24), we can give an expression for the robust placement criterion

JP (XN , θ|a(XK)) = Pr(w(XN |XK) > θ) = 1−Q 1
2
(
√
λ,
√
θ′), (4.46)

where

θ′ =
θ − a(XK)T

(
R(XK,XK)− R(XK,xN )R(XK,xN )T

R(xN ,xN )

)
a(XK)

R(xN ,xN )Ca(xN |XK)
. (4.47)

So, under the assumption of having a perfect knowledge on the spatial gain, the criterion
(4.46) is used in Algorithm 2 to sequentially add new sensors.
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Figure 4.2: The effect of the parameter ρa on the smoothness of the spatial gain. By increasing
ρa, the spatial gain becomes smoother.

4.4 Numerical experiments

Experiments concerning the robustness of the proposed criterion JP (4.22) and of the
criteria from Chapter 3 based the mean of the SNR JE (3.14c), the entropy JH (2.52) and the
mutual information JMI (2.56) are presented in this section. All the simulations are done in
MATLAB-R2018b on operating system macOS version 10.14.3, with processor 3.2 GB Intel
Core i5 and memory 8 GB 1600 MHz DDR3. We first discuss about the concept of robustness
and how to measure it. Next, the effect of θ in JP is shown. Afterwards, we compare the
different criteria in terms of robustness and output SNR. Finally, we will introduce more
numerical tools to evaluate the performance of the criteria from different aspects.

4.4.1 Simulation setup

In the numerical experiments, we consider a one-dimension grid XP = [x1,x2, . . . ,xP ]T in
the normalized range xi ∈ [0, 1] where i = 1, 2, . . . , P for possible sensor locations. Note that
to keep the consistency throughout this chapter, in the experimental part we represent the
scalars with bold lowercase letters. Depending on the smoothness of the signals, the size P of
the grid and the number of initial sensors K, as well as their positions XK will be changed in
different simulation parts. In all the cases, we assume that

ma(XK) = a(XK) + b(XK) + ū(XK), (4.48)

where ma(XK) is the mean of the spatial gain which will be used as the estimation of the
spatial gain, a(XK) is the true value of the spatial gain, b(XK) is a bias in the spatial gain,
and ū(XK) is the uncertainty of the spatial gain. Note that, the sum of the uncertainty and
the bias denotes the error v(XK) in equation (4.27), i.e. v(XK) = b(XK) + ū(XK). We use
GP models GP

(
m(x), C(x,x′)

)
, with a square exponential covariance function C(x,x′) =

σ2 exp(−(x−x′)2/(2ρ2)) to produce the spatial gain a(x), the noise n(x), and the uncertainty
ū(x). Here, ρ is a smoothness parameter where a small ρ compared to 1 means fast spatial
changes, while a large ρ ' 1 means smooth changes. The effect of ρa on the smoothness of
the spatial gain is depicted in Fig. 4.2 for two different values : ρa = 0.05 on the left, and
ρa = 1 on the right. Also, the bias b(x) is generated using a scaled GP such that the ratio
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between the bias and the spatial gain at each position remains intact for each Monte-Carlo
realization. Note that when the GP is scaled in this way, it is not a GP anymore. This is
due to the fact that the scaling factor of the spatial gain is different at each position, and so
the aspect ratio between the spatial gain at each pair of the positions will be changed. The
subscripts (.)a, (.)n, (.)b, and (.)u refer to the GP parameters of the spatial gain, the noise,
the bias and the uncertainty of the spatial gain, respectively. The smoothness parameters ρa,
ρn, ρb, and ρu, and the variances σa, σn, σb, and σu will be changed in different parts of the
numerical experiments. We set all the prior mean functions to be equal to 0 except the mean
function of the spatial gain which is generated according to (4.48). Note that, in practice, we
do not have the actual spatial gain a∗(x), and in our simulations, as an oracle, we generate
randomly one realization from a GP with zero-mean and covariance parameters σa and ρa.

To implement the proposed algorithm JP (xN , θ|â(XK)), it is required to choose a relevant
value for the parameter θ. So, we suggest the following model :

θ = ŜNR(f̂ (XK)) + δ
[
ŜNR(f̂ (XM))− ŜNR(f̂ (XK))

]
. (4.49)

In the above equation, by using (4.33), ŜNR(f̂ (XK)) and ŜNR(f̂ (XM)) are the means of the
SNR before and after adding the new N sensors, respectively. Setting θ according to the above
model helps us to use a meaningful value for this parameter, which is relative to the initial
value of the SNR added by a factor of the increase in the SNR after adding new sensors.
Specifically, by setting δ = 0, we set the parameter θ equal to the initial value of the SNR
before adding the new sensor. On the other hand, if we set δ = 1, the parameter θ becomes
equal to the average SNR after adding the new sensors. In the rest of the simulation part, we
parameterize JP as a function of δ instead of θ.

4.4.2 Failure region and Failure[%] as measures for the uncertainty effect

Although JE and JP are criteria targeting SNR, uncertainty on a(x) may lead to
large values of these criteria at positions where in practice the value of the true output
SNR(f̂ (XM)|XM) may be decreased. The true SNR is given by (4.3), where f(XM) = f̂ (XM)

is the estimated extraction vector. This vector is given by f̂ (XM) = Cn(XM,XM)−1ma(XM)

in the non-sequential approach and by f̂ (XM) = Cn(XM,XM)−1ma(XM|XK) in the sequen-
tial approach. As a consequence, the true output SNR can be rewritten as

SNR(f̂ (XM)|XM) =
σ2
s f̂ (XM)Ta(XM)a(XM)T f̂ (XM)

f̂ (XM)TCn(XM,XM)f̂ (XM)
. (4.50)

Note that (4.50) differs from the estimated SNR, i.e. ŜNR (4.7), since this true SNR (4.50)
depends on the true spatial gain a(XM), contrary to ŜNR which only depends on the esti-
mation of the spatial gain a(XM). In the rest, the set of positions that deteriorates the true
SNR is called failure region (FR).

Fig. 4.3 is an example to understand the notion of FR. In this figure, the size of the grid
is 300, and K = 3 sensors have already been located at the positions XK = [0.25, 0.5, 0.75]T ,
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Figure 4.3: Failure region is where the true value of the SNR with estimated extraction
vector f̂ (XM) is smaller than its initial value before adding the new sensors, i.e. when ∆ŜNR
(the blue curve) defined in (4.51) is negative. Here, the mean of the SNR is used as the
criterion depicted with a red color. The blue curve represents the variation of the true SNR
with estimated f̂ (XM). The tilde superscript represents the normalization of the criteria.

which are marked by circles. Here, we considered an unbiased situation, i.e. b(x) = 0, the
variances are set to be σa = 0.15, σu = 0.15, σn = 0.5, and the smoothness parameters are
ρa = 0.2, ρu = 0.2, ρn = 0.1. The standard deviation of the source signal is σs = 2. To
illustrate the failure phenomenon, we use JE (3.14) as the placement criterion. Now, the aim
is to find the best location for the 4th sensor. In this figure, the tilde superscript indicates that
the function is normalized such that its maximum value is equal to one, and the initial value
is equal to zero. The normalized variation of SNR, denoted ∆S̃NR(f̂ (XM)), is as follows :

∆S̃NR(f̂ (XM)) =
SNR(f̂ (XM))− SNR(f̂ (XK))

SNRmax(f̂ (XM))− SNR(f̂ (XK))
, (4.51)

where SNR(f̂ (XK)) represents the initial value of the SNR before adding the new sensor, and
SNRmax(f̂ (XM)) is the maximum value of the SNR after adding the new sensor. Note that
in this chapter, the points of interest in the criteria are the locations of the maxima (and not
their amplitudes), which are not affected by the normalization. In Fig. 4.3 it is seen that, due
to the uncertainty, the normalized variation of the true SNR, i.e. ∆S̃NR(f̂ (XM)), can take
negative values at some regions, which means that by placing sensors at these positions, the
SNR will take smaller values compared to the initial SNR. Therefore, since SNR(f̂ (XM)) <

SNR(f̂ (XK)) in FR, the numerator of (4.51) becomes negative, and as such, ∆S̃NR(f̂ (XM))

becomes negative. In this figure, FR is marked with dashed arrows. As depicted, although the
true SNR takes quite smaller value in FR, the suggested criterion takes significant values at
these locations. In particular, the criterion takes its maximum value in a point x inside FR,
and so, a failure has happened due to the uncertainty. Therefore, this is an example of the
lack of robustness of the criterion JE .

To analyze the affect of the uncertainty and the bias in the model of the spatial gain on
the size of the FR, we need to define a quantitative statistical measure. To do so, we can
simulate NMC Monte-Carlo realizations of the gain, bias, uncertainty and noise GP, and then
count the total number of sensors positions within the FR, here denoted NFR. For a total size
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Figure 4.4: Failure [%] is a measure to compute the ratio of the sensor placement region which
is in the failure region. (a) In this figure, the effect of the uncertainty level on the Failure [%]

is depicted. Here, the bias is considered to be equal to 0. (b) The effect of bias on Failure [%]

is depicted in this figure. The variance of the uncertainty is set equal to σu = 0.01.

of spatial grid NP , we define the failure rate as :

Failure [%] , Size of the FR
Total size of the spatial grid

=
NFR

NP
. (4.52)

Fig. 4.4 illustrates the effect of uncertainty and bias on Failure[%]. In this figure, three
initial sensors are placed at XK = {0.25, 0.5, 0.75}, and we place the 4th sensor using JE .
The smoothness parameters are set as ρa = ρu = 0.2, ρn = 0.01, and the variances are set
σa = 0.5 and σn = 0.01. We generate Na

MC = 10 realizations for the spatial gain, and for each
realization, we consider 50 runs for the bias, uncertainty and noise (N b

MC = Nu
MC = Nn

MC =

50), leading to a total number of NMC = 500 Monte-Carlo (MC) realizations. Then, Failure[%]

is evaluated according to (4.52). In this figure, the effects of the bias and the uncertainty on
Failure[%] are studied separately. Firstly, in Fig. 4.4a, we consider an unbiased situation setting
b(x) = 0, and different uncertainty levels in the interval σu ∈

[
10−3; 100

]
are used. The blue

curve is the average of Failure[%] over all NMC realizations, and the gray shadow represents
the standard deviation. As it was expected, by increasing σu, the average and the variance of
Failure[%] increase. This experiment is repeated in Fig. 4.4b to study the effect of the bias.
In this figure we use the previous configuration to set up the parameters, except that σu is
kept fixed to σu = 0.01, and the level of the bias is changed in the range σb ∈

[
10−3; 100

]
.

As it can be seen, in average, the effect of the bias implies Failure[%] of about 10 % which
remains almost constant at this amount for σb ≤ 0.1. If the level of bias goes beyond this
value, the effect of the bias on Failure[%] becomes more significant, which means that the
suggested model for the spatial gain is not appropriate, and better methods need to be used
in order to provide the best approximation for the spatial gain. Since our proposed method
is only focused on the uncertainty of the spatial gain, henceforth we assume that a suitable
model is used for the spatial gain, and we set b(x) = 0.
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Figure 4.5: Effect of parameter δ. The solid curves are the proposed criterion for different
δ. The superscript tilde represents the normalization of the function. By increasing δ, the
algorithm is more robust against FR (see the text below for more details). However, other
candidates for sensor placement which provide significant increase in the SNR can be ignored.
So, it is required to make a trade-off between reducing the risk of being in FR, and increasing
the SNR. In this figure, the parameters are set as follows : ρa = 0.2, ρu = 0.2, ρn = 0.1, σa =

0.15, σu = 0.15, σn = 0.5, and σs = 2, with the size of the spatial grid being equal to 300.
Starting with three initial sensors at XK = {0.05, 0.5, 0.95}, we look for the best position for
the 4th sensor.

4.4.3 Effect of δ on the criterion JP

In this part, we study the effect of δ, which controls θ, on the results obtained with JP .
To do so, Fig. 4.5 is provided where the proposed criterion JP (4.43) is used as the target
function with three different values of δ (0.25, 0.5, and 0.95), which are depicted with blue,
red, and green color, respectively. Moreover, ∆S̃NR(f̂ (XM)) which is the true output SNR
normalized according to (4.51) is depicted with a dashed curve. The plots for JE(xN |XK) and
JP (xN , δ|XK) are normalized such that their maximum and initial values are equal to 1 and 0,
respectively. The normalized forms are denoted by a superscript tilde. Note that the locations
of maxima for different criteria will not be changed by the normalization.

As depicted in Fig. 4.5, the proposed criterion behaves differently according to δ. The larger
this parameter is, the smaller the values of the criterion within FR are. It is noticeable that
by increasing δ, besides avoiding FR, it is probable to avoid some positions with significant
increase in the SNR (e.g. for x ≈ 0.95). Consequently, high values of δ should be used to avoid
locating the new sensor in FR, with the cost of achieving a smaller amount of increase in the
SNR. Otherwise, we can decrease δ to keep most of the positions with a significant increase in
the SNR, but this leads to an increased risk of having large values of the criterion for positions
in FR. So, by choosing an appropriate δ, we can make a trade-off between avoiding positions
in FR and keeping the regions with a high increase in the SNR.
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Figure 4.6: Region classification : Positive (P ) vs. Negative (N), and True (T ) vs. False (F ).
P and N represent the regions where ∆S̃NR(f̂ (XM)) is positive and negative, respectively.
T is a situation when the criterion and ∆S̃NR(f̂ (XM)) are both positive, or the criterion is
zero and ∆S̃NR(f̂ (XM)) is negative. F is when the criterion is positive while ∆S̃NR(f̂ (XM))

is negative, or the criterion is zero whenever ∆S̃NR(f̂ (XM)) is positive. Here, the parameter
configuration is as follows : ρa = 0.2, ρu = 0.2, ρn = 0.1, σa = 0.15, σu = 0.15, σn = 0.5,
σs = 2, and δ = 0.5. The size of the spatial grid is 300, with three initial sensors at XK =

{0.05, 0.5, 0.95}.

Finally, we note that by increasing δ, the proposed criterion JP becomes flatter with a single
narrow peak around its maximum. Moreover, as δ increases, the decrease of the criterion is
not uniform with respect to x. For instance, considering the green curve when the parameter δ
is increased to 0.95. We see that by increasing δ the peaks at positions x = 0.93 and x = 0.35

become zero, meanwhile at position x = 0.7 we still have a peak, which means that this
position can be a possible candidate for sensor placement. We note that sometimes due to
some limitations we cannot put the sensor at the maxima of the criteria and we look for the
next best candidate to put the sensor. For instance, if the suggested position by the criterion
is very close to the location of the previously located sensors, we need to look for the next
best candidate to put the new sensor.

4.4.4 Effect of the smoothness of the spatial gain and noise correlation
length-scale on robustness

In this part, we study the influence of the ρa and ρn on the robustness of the criteria.
Based on Fig. 4.6, we call the regions with positive ∆S̃NR(f̂ (XM)) as positive (P), and the
regions with negative ∆S̃NR(f̂ (XM)) as negative regions (N). Here, ∆S̃NR(f̂ (XM)) denotes
the normalized output SNR defined in (4.51). Accordingly, the true positive (TP) is the size
of the region where both ∆S̃NR(f̂ (XM)) and the criterion are positive. We recall that, by the
size of a region we mean the number of grid points which are in the corresponding region. The
number of positions that ∆S̃NR(f̂ (XM)) is negative but the criterion takes a positive value is
the so-called false positive (FP). The notation true negative (TN) corresponds to the size of
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(a) The influence of a smoothness, with β = 0.1.
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(b) The influence of smoothness ratio, with ρa = 0.1.

Figure 4.7: The effect of the smoothness of the spatial gain and the noise on the robustness.
(a) Here, different smoothness values of the spatial gain are considered, and the smoothness
ratio between the noise and the spatial gain is set as β = ρn/ρa = 0.1. As the spatial gain gets
closer to a spatial white noise, FPR[%] increases. (b) Here, the effect of the noise smoothness
is studied. The more similar smoothness degree of the noise and the spatial gain, the larger
FPR[%] is. Compared to the spatial gain, as the noise gets closer to a white noise (decreasing
β), or smooth noise (increasing β), FPR[%] decreases.

the region where ∆S̃NR(f̂ (XM)) is negative, and the criterion is zero. Finally, false negative
(FN) is related to the position with positive ∆S̃NR(f̂ (XM)), and zero value for the underlying
criterion. Now, according to this region classification, and under different combinations of the
values of ρa and ρn, we calculate the false positive rate (FPR) of a criterion as follows :

FPR =
false positive

total number of negatives
=

FP

TN + FP
, (4.53)

where, the denominator is actually the size of the FR. It is noticeable that if the size of the FR
is small, although the FPR gets large, the probability of selecting a position in FR is small.
Conversely, if the size of the FR is large, although FPR gets small, the probability of selecting
a sensor in FR can be large. To avoid these two marginal cases, according to Fig. 4.4, we set
σu ∈ [0.1, 0.8] which provides a moderate Failure[%] between 8% and 30%.

Fig. 4.7a is provided to show the robustness of the proposed criterion JP (xN , δ|a(XK))
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in terms of the average FPR[%] and compare it with the criterion JE(xN |a(XK)) (3.17) for
different smoothness conditions ρa. The larger the smoothness parameter ρa is, the smoother
the spatial gain is. In this figure, three initial sensors are used at XK = {0.05, 0.5, 0.95} in a
spatial grid of size 300, and we look for the 4th sensor position. We note that in this figure, we
intentionally selected the parameter δ between 0 and 1 to better visualise the results. In the
later simulations, based on the set up of the other parameters, we also chose larger values of
δ. The variances σs = σa = σu = σn are all set to be equal to 1. The smoothness parameter
ρa takes 15 different values in the interval

[
10−2, 10

]
in the logarithmic scale, and for each

case, we set ρu = ρa. The smoothness ratio between the spatial gain and the noise is fixed to
be β = ρn/ρa = 0.1. The larger β corresponds to the smoother noise signal. A total number
of NMC = 500 realizations of the spatial gain, the mean, the uncertainty and the noise is
considered. Note that the x-axis has a logarithmic scale in Fig. 4.7. FPR[%] represents the
average value of FPR[%] over the whole Monte-Carlo realizations. As depicted in this figure,
we can see that by increasing the parameter δ, the proposed criterion becomes more robust
against the uncertainty and FPR[%] becomes smaller. In contrast, FPR[%] is almost constant
and equal to 98% for different smoothness degrees using JE(xN |a(XK)) (3.17) which shows
its inability to eliminate the positions in FR.

Now, the effect of the noise smoothness is shown in Fig. 4.7b. In this figure, we set ρa = 0.1,
and the values of the smoothness ratio β = ρn/ρa are sampled in the interval

[
10−2, 10

]
, thus

leading to different values of ρn. It is seen that as the smoothness of the noise is varied,
the proposed method shows a better performance compared to JE . For instance, considering
β = 0.1 and δ = 15, the value of FPR[%] is less than 20% for JP , meanwhile, it is almost
constant and equal to 98% for JE . Generally, by increasing the parameter δ, the FR is better
eliminated by the proposed method, and FPR[%] becomes smaller. We also note that, for the
proposed method, FPR[%] takes its maximum value when the smoothness of the noise gets
close to the smoothness of the spatial signal, i.e. β = ρn/ρa = 1. It is due to the fact that the
smoothness similarity between the noise and the propagated source signal makes it difficult
to separate them. It is also interesting to mention that for larger values of β, where the noise
tends to be close to a constant function, the FPR[%] starts to decrease. This result shows
that whenever the noise is significantly different from the signal in terms of the smoothness,
the FPR[%] takes smaller values.

4.4.5 Controlling the trade-off between robustness and average SNR maxi-
mization

We noted earlier that by increasing the δ parameter, the proposed method becomes more
robust against the uncertainty of the spatial gain, and the FPR[%] decreases. However, making
the risk as small as possible, i.e. being too much strict against FR, may cause some good local
maxima to be ignored, and consequently the algorithm becomes unable to detect positions that
provide a good output SNR. Therefore, it is important to make a trade-off between reducing
the FPR[%] and increasing the output SNR for choosing the parameter δ.

In this section, we study the effect of δ on the output SNR and FPR. To this aim, in Fig. 4.8
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Figure 4.8: The trade-off between the robustness and the maximization of the averaged SNR
improvement can be controlled by changing the parameter δ. The blue curve with y-axis on
the left represents the average FPR[%] according to different levels of uncertainty, and the
orange curve with y-axis on the right depicts the average improvement of the SNR. From left
to right, sub-figures (a), (b), and (c) show the results for different values of δ. It is seen that
by increasing δ, although the average increase in the SNR gets smaller, FPR[%] gets smaller,
too. Depending on the application, and the level of uncertainty σu, we need to set δ, such that
both FPR[%] and the average improvement in the SNR are acceptable.

we compare the behaviour of the proposed method in terms of FPR and the improvement of the
SNR under different uncertainty conditions and different selections of δ. In this figure, we used
a grid of size 100 between 0 and 1 for the sensor positions. An initial sensor is considered in the
middle of the grid at x1 = 0.5, and we added 5 sensors using a greedy approach on the proposed
criterion. The parameters are set as σa = 1, ρa = 0.1, σs = 1, σn = 1 and β = 0.2. The variance
of the uncertainty for the spatial gain varies as follows : σu ∈ {0, 0.1, 0.2, . . . , 1}. We used 10
MC realizations for a(x) and 10 MC realizations for ma(x). The average FPR denoted FPR is
depicted as the blue curve with y-axis on the left, and the average improvement in the output
SNR, i.e. ∆SNR(f̂ (XM)) = SNR(f̂ (XM))− SNR(f̂ (XM))(init) is presented in orange with
the y-axis on the right. Here, SNR(f̂ (XM))(init) denotes the true value of the SNR at the initial
situation with a unique sensor located at x = 0.5. Note that SNR(f̂ (XM))−SNR(f̂ (XM))(init)

is the variation of the SNR, which is equivalent to the denominator of (4.51). This experiment
is repeated for three different values of δ, namely 1, 10, and 20.

As Fig. 4.8 shows, by increasing the uncertainty σu, the FPR increases and the output
improvement of SNR decreases. Furthermore, we can see that by choosing a small value for
δ, the output improvement of SNR takes larger value in average. However, the FPR becomes
larger, meaning that the probability of being in the failure region increases. Comparing Fig. 4.8-
a with Fig. 4.8-b, we see that by increasing δ from 1 to 10, the average FPR becomes smaller
for different values of σu. However, the average improvement in the SNR also decreases. Going
through a more strict selection for δ, in Fig. 4.8-c we see that the average FPR gets quite
smaller, providing a safe situation to avoid FR. Nevertheless, the improvement for the output
SNR significantly decreases.
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To conclude, we can say that, when the uncertainty is low, since the output SNR improve-
ment can be large enough, it is possible to have less increase in the SNR to reduce FPR[%],
and so, we can choose a larger δ. In contrast, when σu is large, since the output SNR is affected
by this uncertainty, it is not desirable to lose a large amount of the SNR to have a smaller
value of FPR[%]. Therefore, it is better not to be too strict, and select a moderate value
for δ. Depending on the application, we can make a trade-off between ∆SNR(f̂ (XM)) and
FPR[%] by changing the parameter δ : in sensitive applications where decreasing the SNR is
not acceptable, we need to choose a large δ, even if the improvement of the output SNR is not
large. On the other hand, in applications which are less sensitive to output SNR, we can take
the risk of being trapped in the failure region to have a large improvement in the SNR, and,
as a consequence, we can choose a smaller δ.

4.4.6 Sequential approach

In this part, we want to compare the proposed method JP (xN , δ|XK) with JH(xN |XK),
JMI(xN |XK) and JE(xN |XK) by using a sequential approach (Section 4.3.2). This comparison
is made based on two performance indexes : the average output SNR, i.e. SNR(f̂ (XM)), and
the average FPR[%]. Here, the overline represents the average value of each measure over
the total Monte-Carlo realizations. For setting up the experiments, we assume that K = 1

initial sensor is located at x1 = 0.5. Then, we add sensors one by one up to M = 10. Note
that, since in this experiment we want to add up to 10 sensors to show the improvement of
the algorithms according to the number of sensors, we chose the smoothness parameter of the
spatial gain, i.e. ρa to be smaller than the previous experiments. In this way, we provide more
variation for the spatial gain. Therefore, the source signal cannot be recovered just by using
a very few sensors, e.g. two or three, and to recover the source signal with a desired accuracy,
we need to collect more information by using a sufficient number of sensors, which is up to
10 sensors in this experiment. Accordingly, the parameters are set as follows : ρa = ρu =

0.01, β = 0.5, σa = σn = 1. We considered two different situations for σu. One is σu = 0.1

which represents a small value for the level of uncertainty, and the other one is σu = 0.8,
which assumes a large uncertainty. Depending on the level of uncertainty, we set δ = 13, and
δ = 10 under the assumption of σu = 0.1 and σu = 0.8, respectively. Note that by reducing
δ under higher uncertainty, we attempt to achieve a required minimum improvement in the
average SNR, while having the same level of robustness measured by FPR[%]. In this part a
number of Na

MC = 10 realizations are used for the spatial gain a(x), and for each realization
we consider 10 runs for the bias, uncertainty and noise (N b

MC = Nu
MC = Nn

MC = 10), leading
to a total number of NMC = 100 Monte-Carlo realizations. For each realization of the spatial
gain, we also have a new realization for the additive noise n(x).

Fig. 4.9 presents the simulation results for different uncertainty levels. The first column is
related to σu = 0.1, and the second column is for σu = 0.8. The first row shows ∆SNR(f̂ (XM))

by adding new sensors, and the second row corresponds to FPR[%]. In all the sub-figures,
the blue, red, orange, and green curves show the performances of the proposed criterion
JP (xN , δ|âK), and other criteria based on the mean of the SNR JE(xN |a(XK)), the mutual
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information JMI(xN |a(XK)), and the entropy JH(xN |a(XK)), respectively.

We begin with a low level of uncertainty σu = 0.1 in the first column. By looking at
Fig. 4.9-a, it is seen that the proposed criterion significantly outperforms the other methods
and provides a larger value for ∆SNR(f̂ (XM)) when the number of the sensors increases. By
sequentially adding 10 sensors, JP (xN , δ|âK) provides ∆SNR(f̂ (XM)) = 30 dB, which still
can be increased by adding more sensors. The next best criterion is JE(xN |a(XK)), which
gives ∆SNR(f̂ (XM)) = 15 dB. It is seen that unlike the proposed criterion, the other criteria
cannot provide a better SNR by adding more sensors since their related curves have become
almost flat. It is important to mention that by adding a few number of sensors (up to 2-3
in this example), we do not see a significant difference in the performance of the proposed
criterion and the one in JE(xN |a(XK)). It may be due to the fact that for a very few number
of sensors, the information is not enough to have a good recovery of the source signal. Howe-
ver, immediately after adding the next sensors, the proposed criterion starts outperforming
JE(xN |a(XK)). Therefore, in this case, to avoid increasing the computational complexity, one
can simply start adding primary sensors using JE(xN |a(XK)). Then, by increasing the num-
ber of sensors, it is recommended to use the proposed criterion as a robust method against
uncertainty. It is interesting to mention that as claimed in Chapter 3, JE(xN |a(XK)) has no-
tably a better performance compared to the classical kriging approaches JH(xN |a(XK)) and
JMI(xN |a(XK)).

To complete the discussion, sub-figure (c) shows the results of FPR[%]. Here, we can
see that the proposed method is quite robust against the uncertainty compared to the prior
works. In contrast, the criteria based on the MI and the mean of the SNR do not have a robust
behavior. Therefore, adding new sensors by using these two criteria cannot be useful due to
the high FPR[%]. Note that the curves related to JMI(xN |XK) and JE(xN |XK) are quite
close to each other. In sub-figure (c), JH(xN |XK) seems to perform better than JMI(xN |XK)

and JE(xN |XK), and it provides approximately FPR[%] = 70% up to adding 9 sensors, with
step-wise increasing changes by adding more sensors. From the blue curve, we can see that
the proposed method is significantly more robust against the uncertainty. It is observed that
FPR[%] starts from 10%, and slightly increases by adding the number of sensors up to about
8 sensors. Then, FPR[%] remains at its maximum value around 60%. This behavior is very
promising, which tells us that by increasing the number of sensors, and consequently providing
better SNR(f̂ (XM)) (concluded from sub-figure (a)), we can be hopeful that FPR[%] will
not go beyond 60%. However, depending on the application, this value can still be considered
risky enough to avoid adding more new sensors.

To continue, we analyze the second column for σu = 0.8. To compare the performance
of the proposed method with the previous criteria, in sub-figures (b) and (d), we see that
the proposed criterion has a superior performance compared to the other methods both in
SNR(f̂ (XM)) and FPR[%]. Sub-figure (b) shows that by adding 10 sensors, the proposed
criterion provides SNR(f̂ (XM)) = 16 dB, which is 9 dB higher than the result achieved by
JE(xN |a(XK)). In this part, by choosing δ = 10, we try to keep the results for FPR[%]

close to sub-figure (c). Comparing sub-figures (a) and (b), it is seen that by increasing the
uncertainty level from σu = 0.1 to σu = 0.8, the average output SNR decreases. For instance,
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Figure 4.9: In this figure, the performance of the proposed method is compared with the prior
works by using a sequential approach. Two situations are studied in this figure : σu = 0.1 in
the first column, and σu = 0.8 in the second column. In the top, the average output SNR
is reported, and in the bottom, the average FPR[%] is presented. It is seen that both in a
low and high uncertainty levels, the proposed method provides a larger SNR, as well as more
robustness against the uncertainty. Note that in (c) and (d), JMI and JE largely overlap.

considering that 10 sensors are added, for the proposed criterion, SNR(f̂ (XM)) drops from
30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.5 Other numerical tools for performance evaluation

Previously, in Subsection 4.4.2, we discussed about FR as a notion to determine the regions
which have negative SNR caused by the uncertainty, and then, we denoted the portion of the
spatial grid within the FR by Failure[%]. Following that, in Subsection 4.4.4, we introduced
FPR as a measure to represent the robustness of a criterion against uncertainty by using the
concept of failure. We explained that one can report the robustness of a criterion against
uncertainty by counting the number of the times that the criterion suggests to put a sensor
in the FR (i.e., the probability that the criterion takes its maximum value at FR).
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Although FPR is a useful tool to measure the robustness of a criterion against uncertainty,
our demand is not just to avoid failure region, but also we have to find the position which
mostly increases the SNR, as described in subsection 4.4.5. Therefore, it is necessary to present
more comprehensive measures to take into account different aspects of performance evalua-
tions. In other words, we need a measure which reports the ability of a criterion to propose a
position that provides an as large as possible increase in the SNR as well as less probability
of being in the FR. In this part, such numerical tools will be provided to achieve this aim.

4.5.1 Thresholding instead of maximizing

To move forward to our goal in this part, we first explain about an important fact for
sensor placement. Up to now, different criteria have been suggested to be maximized for
sensor placement, and we used the measures FPR[%] and ∆SNR(f̂ (XM)) for performance
evaluation which are based on the sensor positioning obtained according to the maxima of
the criteria. However, choosing the maximum of a criterion may not be an efficient strategy
to properly evaluate the performance of the criterion from the two aspects of our goal, i.e.
having a large increase in the average SNR and low uncertainty. To explain more, we give
two examples. In the first example, let’s consider JP as the criterion for sensor placement.
The position that maximizes the criterion JP may have the lowest uncertainty against FR,
however, the amount of increase in the average SNR may not be significant. On the other hand,
there may be other non-maximizer points with a little bit higher uncertainty compared to the
maximum of the criterion, but these non-maximizer points can have a significant increase in
the average SNR. It means that it is worth to accept this small increase in the uncertainty to
have a large increase in the SNR. As the second example, consider JE as the sensor placement
criterion. Although the maximum of JP has the largest increase in the average SNR, this
point can contain too much uncertainty of being in the FR. So, there can be non-maximizer
points with a little bit less increase in the average SNR, but a remarkably smaller uncertainty.
According to this explanation, and the examples of JP and JE , we can conclude that the
performances of different criteria cannot be properly evaluated just based on the maxima of
the criteria. Therefore, we suggest that instead of considering the maxima of the criteria, we
assume a threshold ξ for the minimum increase of the SNR that we expect to have, and then,
among all the positions above this threshold, we select the ones with smaller uncertainties for
sensor placement. In the following, we introduce a new region and numerical tools based on
thresholding the criteria (instead of maximizing them) to better evaluate and compare the
performances of different criteria.

4.5.2 Region of interest (ROI)

In this part, besides FR, we define a new region based on a threshold ξ which is a fraction
of the maximum value of the SNR. In Fig. 4.10 an example of this threshold is demonstrated
with a green dashed line for ξ = 0.5, which is 50% of the maximum SNR. According to this
threshold, the positions where the true value of the SNR, i.e. SNR(f̂ (XM)) takes its value
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zero threshold (at the initial value of the SNR), we define a new threshold ⇠. This threshold
is a fraction of the maximum value of the SNR. In Fig. 4.8 an example of this threshold
is demonstrated with a green dashed line for ⇠ = 0.5, which is 50% of the maximum SNR.
According to this threshold, the positions where the true value of the SNR i.e. SNR(f̂ (XM))

takes its value above ⇠ are considered as our desired positions, and we name the set of these
positions as the region of interest (ROI). Actually, ⇠ declares the minimum increase in the
SNR that we expect to have by adding the new sensor.

With the parameter ⇠, we can have a trade off between the amount of increase in the
SNR, and reducing the possibility of choosing locations in the FR. To be clear, let us explain
what happens if ⇠ be increased or decreased : a) by decreasing ⇠, the size of the ROI will be
larger, and among all possible positions in ROI, we select the position where the SNR has less
uncertainty (less uncertainty on the model). Therefore, although the selected position may
have a smaller increase in the SNR compared to the maximum value of the SNR, however,
it is more probable that the SNR takes this value and so, less probable to be in the FR. b)
by increasing ⇠, the size of the ROI will be smaller. In this case, it is insisted that we want
the SNR to be increased significantly, and the positions with a small or moderate values of
the SNR are ignored. Although in this situation we may have a large increase in the SNR,
however, it is more probable that the proposed position be in the FR. It is due to the fact
that, there may exist some positions out of the ROI with less uncertainty on the SNR, while
the positions in the ROI has a high degree of uncertainty. So, to sum up, ⇠ is a tool to make a
trade of between increasing the SNR and decreasing the uncertainty of the SNR. The larger
⇠ is, the more risk we take to have a larger increase in the SNR. The smaller ⇠ is, the less
probable it is to select the positions in FR.

By defining the region of interest which is based on the true value of the SNR SNR(f̂)

and the threshold ⇠, in the next step we explain how we can use ROI as a tool to evaluate the
performance of a criterion in terms of increasing the SNR and robustness against uncertainty
(avoiding FR). For that, we define four other regions as follows :

— True positive (TP) : the regions where both the criterion and the true SNR are in the
ROI.

— True negative (TN) : the regions where both the criterion and the true SNR are out of
the ROI.

— False positive (FP) : the regions where the criterion is in the ROI, but the true SNR
is out of the ROI.

— False negative (FN) : the regions where the criterion is out of the ROI, but the true
SNR is in the ROI.

From now on, by abbreviations TP, TN, FP and FN, we mention to the size of the corres-
ponding regions. Through these measures, we can have a better comprehension about the
performance of a criterion. As mentioned before, the performance of a criterion should be eva-
luated in two aspects : being able to have a significant increase in the SNR, and the robustness
against uncertainty (avoiding failure region). In the following, we explain how the mentioned
measures can help us to evaluate the performance of a criterion from these two aspects.
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Figure 4.8: Numerical tools.

30 dB in sub-figure (a) to 16 dB in sub-figure (b). From the same point of view, the changes
of the output SNR for JE(xN |a(XK)) is from 15 dB to 8 dB, and for JMI(xN |a(XK)) it is
from 4 dB to 2 dB. The results for JH(xN |a(XK)) remain almost unchanged under different
level of uncertainties.

4.3 Some numerical tools for performance evaluation

Previously, in subsection 4.2.2, we discussed about failure region (FR) as a notion to
determine the regions which have negative SNR caused by the uncertainty, and we denoted
the portion of the spatial grid within the FR by Failure[%]. Following that, in subsection 4.2.4,
we introduced FPR as a measure to represent the robustness of a criterion against uncertainty
by using the concept of failure. More precisely, one can report the robustness of a criterion
against uncertainty by counting the number of the times that the criterion permits to put a
sensor in the FR (i.e. the probability that the criterion takes a positive value at FR). Although
FR is a useful tool to find out the robustness of an algorithms against uncertainty, however,
as described in subsection 4.2.5, our demand is not just to avoid failure region, but also it
is required to be able to find the position which mostly increases the SNR. Therefore, it is
necessary to present more comprehensive measures to be able to take into account different
aspects of performance evaluations. In another word, we need a measure which reports the
ability of a criterion to propose the position which provides the largest increase in the SNR as
well as less probability of being in the FR. In this part, such numerical tools will be provided
to evaluate the performance of different methods from two aspects : a) robustness against the
uncertainty, and b) capability of improving the SNR.

To move toward this goal, besides FR, it is required to define a more general region which
is represented in Fig. 4.8. This figure is exactly the same as Fig. 4.1 except that instead of a
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zero threshold (at the initial value of the SNR), we define a new threshold ⇠. This threshold
is a fraction of the maximum value of the SNR. In Fig. 4.8 an example of this threshold
is demonstrated with a green dashed line for ⇠ = 0.5, which is 50% of the maximum SNR.
According to this threshold, the positions where the true value of the SNR i.e. SNR(f̂ (XM))

takes its value above ⇠ are considered as our desired positions, and we name the set of these
positions as the region of interest (ROI). Actually, ⇠ declares the minimum increase in the
SNR that we expect to have by adding the new sensor.

With the parameter ⇠, we can have a trade off between the amount of increase in the
SNR, and reducing the possibility of choosing locations in the FR. To be clear, let us explain
what happens if ⇠ be increased or decreased : a) by decreasing ⇠, the size of the ROI will be
larger, and among all possible positions in ROI, we select the position where the SNR has less
uncertainty (less uncertainty on the model). Therefore, although the selected position may
have a smaller increase in the SNR compared to the maximum value of the SNR, however,
it is more probable that the SNR takes this value and so, less probable to be in the FR. b)
by increasing ⇠, the size of the ROI will be smaller. In this case, it is insisted that we want
the SNR to be increased significantly, and the positions with a small or moderate values of
the SNR are ignored. Although in this situation we may have a large increase in the SNR,
however, it is more probable that the proposed position be in the FR. It is due to the fact
that, there may exist some positions out of the ROI with less uncertainty on the SNR, while
the positions in the ROI has a high degree of uncertainty. So, to sum up, ⇠ is a tool to make a
trade of between increasing the SNR and decreasing the uncertainty of the SNR. The larger
⇠ is, the more risk we take to have a larger increase in the SNR. The smaller ⇠ is, the less
probable it is to select the positions in FR.

By defining the region of interest which is based on the true value of the SNR SNR(f̂)

and the threshold ⇠, in the next step we explain how we can use ROI as a tool to evaluate the
performance of a criterion in terms of increasing the SNR and robustness against uncertainty
(avoiding FR). For that, we define four other regions as follows :

— True positive (TP) : the regions where both the criterion and the true SNR are in the
ROI.

— True negative (TN) : the regions where both the criterion and the true SNR are out of
the ROI.

— False positive (FP) : the regions where the criterion is in the ROI, but the true SNR
is out of the ROI.

— False negative (FN) : the regions where the criterion is out of the ROI, but the true
SNR is in the ROI.

From now on, by abbreviations TP, TN, FP and FN, we mention to the size of the corres-
ponding regions. Through these measures, we can have a better comprehension about the
performance of a criterion. As mentioned before, the performance of a criterion should be eva-
luated in two aspects : being able to have a significant increase in the SNR, and the robustness
against uncertainty (avoiding failure region). In the following, we explain how the mentioned
measures can help us to evaluate the performance of a criterion from these two aspects.
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— True positive (TP) : the regions where both the criterion and the true SNR are in the
ROI.

— True negative (TN) : the regions where both the criterion and the true SNR are out of
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against uncertainty (avoiding failure region). In the following, we explain how the mentioned
measures can help us to evaluate the performance of a criterion from these two aspects.
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Figure 4.10: Region of interest (ROI) is the set of positions where the true value of the SNR,
i.e. SNR(f̂ (XM)) takes its value above a threshold ξ. Based on ROI, four different regions are
defined : I) TPROI : the regions where both the sensor placement criterion and the true SNR
are in the ROI. II) TNROI : the regions where both the sensor placement criterion and the
true SNR are out of the ROI. III) FPROI : the regions where the sensor placement criterion
is in the ROI, but the true SNR is out of the ROI. IV) FNROI : the regions where the sensor
placement criterion is out of the ROI, but the true SNR is in the ROI.

above ξ are considered as our desired positions, and we call the set of these positions as the
region of interest (ROI). So, ξ can declare the minimum increase in the SNR that we expect
to have by adding the new sensor. Based on the definition of ROI, we also define the following
four segments

— True positive (TPROI) : the regions where both the sensor placement criterion and the
true SNR are in the ROI.

— True negative (TNROI) : the regions where both the sensor placement criterion and the
true SNR are out of the ROI.

— False positive (FPROI) : the regions where the sensor placement criterion is in the ROI,
but the true SNR is out of the ROI.

— False negative (FNROI) : the regions where the sensor placement criterion is out of the
ROI, but the true SNR is in the ROI.

These segments are demonstrated in Fig. 4.10, and from now on, by abbreviations TPROI,
TNROI, FPROI and FNROI, we mention to the size of the corresponding segments. Next, we
will explain how this new region classification can provide a better comprehension about the
performance of a criterion from different aspects.
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As mentioned before, the performance of a criterion should be evaluated in two aspects :
being able to have a significant increase in the SNR, and the robustness against uncertainty
(avoiding failure region). The advantage of defining ROI is that, instead of maximizing a
criterion for sensor placement, we can define a region as the candidate to add the new sensor,
and it helps us to achieve the two goals. For instance, if the maximum of the criterion JE which
maximizes the average SNR contains a high uncertainty, we can choose another position in
ROI with a little bit less increase in the average SNR (depending on the value of ξ), but
instead having a much smaller uncertainty.

With the threshold ξ, we can have a trade off between the amount of increase in the
SNR, and reducing the possibility of choosing locations in the FR. To be clear, let us explain
what happens if ξ is increased or decreased : a) by decreasing ξ, the size of the ROI will be
larger, and among all possible positions in ROI, we select the position where the SNR has
less uncertainty on the model. Therefore, although the selected position may have a smaller
increase in the SNR compared to the maximum value of the SNR, it is more probable that the
SNR takes this value, and so, less probable to be in the FR. b) by increasing ξ, the size of the
ROI will be smaller. In this case, it is insisted that we want the SNR to increase significantly,
and the positions with a small or moderate values of the SNR are ignored. Although in this
situation we may have a large increase in the SNR, it is more probable that the proposed
position is in the FR. It is due to the fact that, there may exist some positions out of the ROI
with less uncertainty on the SNR, while the positions in the ROI may have a high degree of
uncertainty.

To summarize, ξ is a tool to make a trade-off between increasing the SNR and decreasing
the uncertainty of the SNR. The larger ξ is, the more risk we take to have a larger increase in
the SNR. The smaller ξ is, the less probable it is to select the positions in FR. Depending on
the application and the level of the risk we want to take regarding the uncertainty, as well as
the amount of the increase in SNR that we expect, one can choose the threshold ξ.

In the following, we introduce three different performance indices relying on the threshold
ξ and ROI to better evaluate the performance of a criterion.

4.5.3 Recall, Specificity, and their Harmonic mean

According to Fig. 4.10, it is important to well detect both the positive segments (regions
where the true SNR is above the threshold ξ) and the negative segments (regions where the
true SNR is bellow the threshold ξ). We can say that a criterion has a good performance if a
large portion of the ROI can be recognized as positive, and also a large portion out of ROI is
recognized as negative by the criterion. These two aspects can be separately measured by two
performance indexes Recall and Specificity which are defined in the following.

I) Recall : If we consider a specific threshold for the SNR ξ, then, we say that a criterion
has a good performance to detect the positive region when TPROI is large relative to the
total size of the positive region. Accordingly, we define Recall (Rcl) as the ratio between
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TPROI and the size of ROI which measures the percentage of the ROI detected by a
criterion :

Rcl =
True positives

Number of actual positive
=

TPROI

TPROI + FNROI
. (4.54)

Note that if we denote the size of the ROI as |ROI| in the denominator, TPROI+FNROI =

|ROI|, which is the total size of the region where the true SNR is above ξ.
II) Specificity : If we consider a specific threshold for the SNR ξ, then, we say that a

criterion has a good performance to detect the negative region when TNROI is large
relative to the total size of the negative region. Accordingly, we define Specificity (Spc)
as the ratio between TNROI and the size of the region out of ROI, which is the percentage
of positions out of ROI detected by a criterion :

Spc =
true negative

no. of actual negative
=

TNROI

TNROI + FPROI
. (4.55)

Here, the denominator, TNROI +FPROI = |ROI| is the total size of the region out of the
ROI which is denoted by |ROI|.

III) Harmonic mean, an average between Recall and Specificity : Rcl and Spc do
not necessarily behave in the same manner and it is possible to have a large value for
Rcl but the Spc takes a quite smaller value. For instance, although an algorithm may
be able to sufficiently detect positive positions with a large Rcl, it may fail to shrinkage
the negative region and detect some positions in ROI as positive which causes Spc to
be small. The opposite may also be the case, that is, a criterion has a good performance
in ignoring ROI and has a large Spc, but it fails to properly detect ROI and has a
small Rcl. Therefore, it is necessary to make an average between Rcl and Spc to take
into account both aspects of our goal. For instance, Harmonic mean (Hrm) can be used
which is defined as follows

Hrm = 2× Rcl× Spc
Rcl + Spc

. (4.56)

In the next part, we will present some numerical experiments to compare the performance
of different criteria based on Rcl, Prc, and their Harmonic mean Hrm.

4.5.4 Performance evaluation

In this part, we study and compare the ability of our proposed criteria JP and JE to detect
the positive and negative regions. To this end, Fig. 4.11 is provided where we have reported
Rcl and Spc as well as their mean Hrm versus different threshold levels ξ. In this figure, the
parameters are set the same as 4.4.3, and 100 Monte-Carlo realizations of a(x), ma(x), and
n(x) are used to report the measures in average. Depending on the threshold level ξ, we set the
parameter δ for JP such that this criterion has its best performance in terms of the underlying
measure. This means that, we try different values of δ, and among them, we select the one
which has the largest Rcl, Spc, and Hrm to be reported.

In this figure, we see that JP performs better than JE both in terms of Rcl and Spc.
However, this criterion shows a dual behaviour in terms of Hrm as an average between Rcl
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Figure 4.11: Performance in terms of Rcl, Spc, and Hrm.

and SPC. Using JP , the measure Hrm takes larger values for higher thresholds ξ, but smaller
values for lower thresholds. It is important to note that, if a specific value for δ maximizes
Rcl, it does not necessarily maximizes Spc, and vice versa. This is why the Hrm, in average,
does not show the same behavior as in Rcl and Spc in the first and second rows of Fig. 4.11.

From Fig. 4.11, we can conclude that since for the smaller values of the threshold ξ Hrm
is larger in case of using JP , it is possible to find a value for δ such that JP has a better
performance than JE both in terms of Rcl and Spc. However, by increasing ξ and bringing the
threshold level close to the maximum of the normalized true SNR, it is not possible to have
a large Rcl and Spc at the same time, and depending on the application, we have to choose
either having a large Rcl or a large Spc to set the parameter δ.

4.6 Conclusion

In this chapter, by considering a linear signal extraction, we targeted the predicted output
SNR for the sensor placement problem. Since the SNR is a continuous random variable in our
setting, we presented a robust criterion for sensor placement based on the maximization of its
cdf at a target SNR value, i.e. Pr(SNR(XM) ≥ θ).

Depending on the chosen target SNR value in the proposed criterion, we can make a
trade-off between an improvement of the SNR and the robustness of the criterion. We also
showed that the proposed criterion is derived from the distribution of the SNR so that the
previously proposed criterion JE can be seen as a special case of the present study. To reduce
the computational cost of evaluating the criterion, we proposed a sequential approach where
new sensor locations are chosen in batches. We presented how to update this sequential version
when some information on the gains of the already placed batches of sensors is available.
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Numerical results showed a consistent superiority of the proposed criterion compared with
the classical kriging and the average SNR criteria in terms of the output SNR and robustness
against the uncertainty on the model of the spatial gain.

In the next chapter, we will present a gradient-based technique to develop a fast opti-
mization algorithm. This technique is applied on our first proposed criterion JE in a one
dimensional case, which can also be extended for the new criterion in this chapter JP , as well
as higher dimensional cases.
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So far in this thesis, by assuming a stochastic model, we were focused on presenting some
robust sensor placement criteria based on the maximization of the SNR of the desired source.
To this end, we first suggested to target the average SNR JE in Chapter 3, and then, a more
general and robust criterion based on the pdf of the SNR JP was proposed in Chapter 4. Both
methods have shown a significant improvement compared to the classical kriging approaches
using criteria based on the entropy JH , and the mutual information JMI in terms of the
output SNR. In all these cases, to solve the maximization problem, we used a greedy approach
in which the sensors are added one by one from a fixed grid of candidate sensor positions.
However, the greedy method is restricted to be on a predefined grid and by increasing the
size of the grid, the computational cost will be increased, too. Consequently, to have better
results, the grid should be fine enough, leading to a high computational cost. To solve these
issues, in this chapter, we propose a first order optimization-based approach that in contrast
to the one-by-one strategy adopted by the greedy method on a grid, optimizes all the sensor
positions at once and does not discretize the search space. In addition, since placing 2 sensors
very close to each other may not be feasible, e.g. due to the physical size of the sensors, a
regularizing term is added to avoid choosing too close sensor positions. As the cost function is
non-convex, to avoid bad local minima, the proposed algorithm is initialized by the solution
of the greedy approach. In this chapter, we will implement our proposed optimization method
on our first suggested criterion JE . However, it can be extended to the other criteria as well.

In the rest of this chapter, we first present the details of the proposed method in Section 5.1.
Then, Section 5.2 presents the performance of the proposed method and compares it with
greedy approach. Finally, the conclusion is presented in Section 5.3.

81
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5.1 Proposed method

In Chapter 3 we showed that if we assume that M sensors are located at positions XM =

[x1,x2, . . . ,xM ]T , by using a linear source extractor, and having a GP assumption on the
spatial gain and the noise, then, the the mean of the SNR as a criterion to be optimized is
obtained as follows :

JE(XM) = ma(XM)TCn(XM,XM)−1ma(XM) + Tr
[
Cn(XM,XM)−1Ca(XM,XM)

]
,

(5.1)
where Ca(XM,XM) ∈ RM×M and Cn(XM,XM) ∈ RM×M are the covariance matrices of the
spatial gain and the noise, respectively. Moreover,ma(XM) = [ma(x1),ma(x2), . . . ,ma(xM )]T

is the set of means at locations {xi}i∈{1,··· ,M}. Then, since directly maximizing (5.1) in a grid
requires a combinatorial search, leading to a high computational cost, a greedy approach has
been introduced in Chapter 3 that selects the M sensors by sequentially selecting N < M

sensors at a time. Assuming that K sensors have already been placed, to choose the locations
of the next N sensors, the following criterion is optimized :

JE(XN |XK) = E

{
[
a(XK)T , a(XN )T

] [Cn(XK, XK) Cn(XK, XN )

Cn(XN , XK) Cn(XN , XN )

]−1 [
a(XK)

a(XN )

] ∣∣∣∣XK
}
.

(5.2)
However, optimizing the above function by a combinatorial search and by increasing the grid
size significantly increases the computational cost.

In this section, we present our proposed framework to solve the optimization problem for
sensor placement. Unlike the greedy approach, our proposed method directly provides the
positions of all the required number of sensors. By considering a one dimensional situation,
we want to minimize f(XM) , −JE(XM) where JE is presented in (5.1). In order to control
the average distances between each pair of the sensors, we constrain the sum of the squared
distances to be greater than a threshold. Furthermore, due to the spatial constraints of the
boundaries, we consider a normalized case where 0 ≤ xi ≤ 1 1. Therefore, we study the
following minimization problem

min
XM

f(XM) s.t.

{
‖DXM‖22 ≥ ε
0 ≤ xi ≤ 1, i ∈ {1, 2, . . . ,M}

(5.3)

where D ∈ R
M(M−1)

2
×M is a matrix that enumerates all the possible combinations of positions

in pairs of size two i.e. ‖DXM‖22 =
∑M

i=1

∑M
j>i |xi−xj |2. For instance, if the number of sensors

is M = 3, then

DXM =




1 −1 0

1 0 −1

0 1 −1




︸ ︷︷ ︸
D



x1

x2

x3




︸ ︷︷ ︸
XM

=



x1 − x2

x1 − x3

x2 − x3


.

1. Note that to keep the consistency of this chapter, in the experimental part we represent the scalars with
bold lowercase letters.
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So, ‖DXM‖22 shows the averaged distances between each pair of sensor positions, and by
constraining it to be greater than ε, we want the minimum distances between the sensors to
be greater than ε in average. The MATLAB code to generate the matrix D is presented in
Appendix B. To solve (5.3), we define an auxiliary variable z(XM) , DXM, and reformulate
(5.3) as the following problem :

min
XM,z(XM)

f(XM) s.t.





z(XM) ∈ Aε,
z(XM) = DXM,

0 ≤ xi ≤ 1, i ∈ {1, . . . ,M},
(5.4)

where Aε =
{
z(XM) ∈ RM

∣∣∣ ‖z(XM)‖22 ≥ ε
}
. To solve (5.4), we use the penalty method

[Ber99], by adding the constraint z(XM) = DXM as a penalty to the target function with
the penalty parameter α :

min
XM,z(XM)∈Aε

{
f(XM) +

1

2α
‖z(XM)−DXM‖22

}

s.t. 0 ≤ xi ≤ 1 i ∈ {1, . . . ,M}. (5.5)

Then, an alternating minimization method is used to optimize it. At iteration l, the cost is
first optimized over z(XM), fixing XM to its current estimate X(l)

M . That is :

z(XM)(l) = argmin
z(XM)∈Aε

1

2α
‖z(XM)−DX(l)

M‖22. (5.6)

The solution to the above minimization is a projection onto the set Aε as follows :

z(XM)(l) =





X(l)
M, if ‖X(l)

M‖22 ≥ ε

X(l)
M

‖X(l)
M‖22

ε, otherwise.
(5.7)

For the second step, the variable z(XM) is fixed as in (5.7), and we do the minimization over
XM as follows :

X(l+1)
M = argmin

XM

{
f(XM) +

1

2α
‖z(XM)(l) −DXM‖22

}
s.t. 0 ≤ xi ≤ 1, i ∈ {1, . . . ,M}.

(5.8)

Since the constraint is a quite simple convex set, to solve (5.8), a projected gradient descent
is used : after a gradient descent (GD) update, the result is projected onto [0, 1]. That is, by
defining the cost function as follows :

g(XM) = f(XM) +
1

2α
‖z(XM)(l) −DXM‖22, (5.9)

the gradient step to optimize (5.8) is

X(l+1)
M = X(l)

M − µ∇XMg(X(l)
M), (5.10)
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where, ∇g(X(l)
M) is the gradient of the smooth function g(.) at the previously updated point

X(l)
M, and µ > 0 is a step size. To derive the gradient of g(.), we can write :

∇XMg(X(l)
M) = ∇XMf(X(l)

M)− α−1DT (z(XM)(l) −DX(l)
M). (5.11)

We use the chain rule to calculate ∇f(X(l)
M) as follows :

∂f

∂xi
(X(l)
M) =Tr

[(
∂f

∂ma
(XM)

)T ∂ma

∂xi
(XM)

]

+Tr
[(

∂f

∂Ca (XM)

)T ∂Ca

∂xi
(XM)

]

+Tr
[(

∂f

∂Cn (XM)

)T ∂Cn

∂xi
(XM)

]
.

where xi is the ith element of XM. The above expression is simplified to the following :

∂f(X(l)
M)

∂xi
= Tr

[
− 2ma(XM)TCn(XM,XM)−1∂m

a(XM)

∂xi

−Cn(XM,XM)−1∂C
a(XM,XM)

∂xi
+ Cn(XM,XM)−1[ma(XM)ma(XM)T

+ Ca(XM,XM)]Cn(XM,XM)−1∂C
n(XM,XM)

∂xi

]
,

where
∂ma

∂xi
(XM) =

[
∂ma

j

∂xi

]

j

, ma
j denotes the jth element of the mean vector, and

∂C
∂xi

(XM) =

[
∂Cij

∂xi

]

(i,j)

, in which C represents any covariance matrix, with Cij correspon-

ding to its (i, j)th entry. In this way, we have computed the gradient of f(X(l)
M) over the ith

sensor position, providing thus the expression of the gradient vector ∇XMf(X(l)
M).

To determine the gradient step size µ in (5.10), we use a backtracking line search strategy
[Ber99]. Starting with an initial value for µ, this strategy sequentially reduces µ by a decreasing
factor 0 < β < 1 until the following inequality is satisfied

g(X(l)
M − µ∇g(X(l)

M)) > g(X(l)
M)− µ

2
%(l),

where %(l) = ‖∇g(X(l)
M)‖22. By satisfying the above condition we aim to have a large enough

decrease of g(.). After updating XM using (5.10), all the element of X(l+1)
M are projected into

[0, 1].

Finally, to solve (5.5) we start with an initial point and alternate between the projection
step (5.7) and the GD step (5.10). As done in standard penalty methods [Ber99], the problem
(5.5) should be solved for a decreasing sequence of α, i.e. {α0, α1, . . .}, where αj+1 = ηαj ,
with 0 < η < 1. For each fixed value of α, we perform a few iterations between (5.7), (5.10),
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Algorithm 3 Alternating minimization (AM) for solving (5.4)

1: Inputs :
{
X(0)
M , z(XM)(0)

}
, µ0, α0, Q (number of iterations)

2: Initialization : Set µ = µ0, l = 0

3: for j = 1, 2, · · · , Q do
4: while stopping criterion not met do
5: %(l) = ‖∇g(X(l)

M)‖22
6: while g(X(l)

M − µ∇g(X(l)
M)) > g(X(l)

M)− µ
2%

(l) do
7: µ← β · µ
8: end while
9: X(l+1)

M = X(l)
M − µ∇g(X(l)

M)

10: Project X(l+1)
M into [0, 1]

11: Perform projection (5.7) to obtain z(XM)(l+1)

12: l← l + 1

13: end while
14: αj+1 = η · αj
15: end for
16: Output : X(l)

M

and then projecting XM between 0 and 1. Moreover, iterations corresponding to αj+1 are
initialized by the final estimate found for αj . The final algorithm to solve (5.3) is summarized
in Algorithm 3.

Since the problem (5.4) is non-convex, its initialization is important to find an appropriate
minimizer. We propose to initialize the algorithm with the solution obtained by the greedy
approach we used in Chapter 3. In this way, the algorithm is more likely to end up with a
good local minimum.

5.2 Numerical experiments

In this section, we present some experiments to evaluate the performance of the proposed
method. First, in Subsection 5.2.1 the numerical setup is explained. Then the influence of the
initialization is studied in Subsections 5.2.2. Afterwards, in Subsection 5.2.3 we show the effect
of the regularization based on the sensors distances. Finally, the effect of the smoothness of
the spatial gain in the performance is presented in Subsection 5.2.4.

5.2.1 Numerical setup

Synthetic data are generated in a 1D space, where the range of the sensor locations is
normalized between 0 and 1. We consider a prior on the spatial gain and noise to be generated
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Figure 5.1: The mean of the spatial gain ma(x).

from GP
(
m(x), C(x,x′)

)
, with a square exponential covariance function

C(x,x′) = σ2 exp
−(x−x′)2

2ρ2 .

The mean of the noise is set to be 0. The mean of the gain is given by

ma(x) =

5∑

i=1

γi sindi(wiπx), (5.12)

where, γi, di and wi are the ith elements of the vectors G = [0.1, 0.3, 0.5, 0.7, 0.9], D =

[1, 1, 3, 1, 2], and W = [5, 6, 7, 8, 9], respectively. The reason that we choose (5.12) for the
mean of the spatial gain is to control the behaviour of the spatial gain in terms of the number
of local optimizer points, as well as their positions in the spatial grid. With the selected
parameters, the mean is depicted in Fig. 5.1. The smoothness parameters ρn and ρa, and
the variances σn and σa as well as the size of the spatial grid for greedy initialization take
different values for each experiment. Also, through this section, we used 50 MC realizations
of the spatial gain and the noise for different experiments. Finally, concerning the algorithm
parameters, we set α0 = 1, Q = 50, η = 0.5, µ0 = 1, and β = 0.5.

5.2.2 Influence of the initialization

In this part, we study the influence of the initialization on the performance of the proposed
method. We set the size of the spatial grid to be 100. Two different values of the uncertainty
on the spatial gain are considered : σa = 1 and σa = 3. The noise variance σn is accordingly set
such that the SNR becomes 0 dB. The smoothness of the uncertainty on the spatial gain (ρa)
is set to ρa = 0.001, corresponding to an uncertainty with almost no spatial correlation. Since
in this experiment we want to add several sensors, we have selected a small value for ρa which
leads to using more sensors. The spatial smoothness of the noise ρn is set to ρn = 0.01ρa.
By having M sensors, the number of the sensor pairs becomes M(M−1)

2 , and if we assume the
distances between each two pairs of the sensors not to be greater than 10−3, then we can set
the lower bound ε on ‖XM‖22 to be ε = M(M−1)

2 × 10−3.
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Figure 5.2: Influence of the initialization on the gradient-based optimization approach. Here,
the output SNR vs. the number of sensors is presented for two different values of σa.

The true value of the output SNR, i.e. SNR(f̂ |XM ) = (σ2
s f̂
TaMaTM f̂)/(f̂TCn

MM f̂) with the
estimated extraction vector f̂(XM) = Cn(XM,XM)−1ma(XM) versus the number of desired
sensors M is depicted in Fig. 5.2. If no prior information is used for the initialization, one
can initialize the sensor locations regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where the sensors are added one by one,
to initialize the sensor locations. Firstly, one can see that the greedy initialization leads to a
better extraction of the source s(t) than using regularly-spaced initial locations for the sensors
before applying our proposed method to adjust the sensor locations. In Fig. 5.2-a, we can see
that for σa = 1 the difference of output SNRs using regularly-spaced initialization and greedy
initialization, varies between 12dB for a single sensor and 13dB for 15 sensors. Also considering
σa = 3 in Fig. 5.2-b, these values are 4dB for a single sensor and 10dB for 15 sensors. So, we
can clearly see the improvement of the proposed method by using the greedy initialization.

Moreover, the proposed method (the yellow curve) for adjusting the sensor locations leads
to improving the SNR compared to the greedy approach (the blue curve). For instance, by
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Figure 5.3: Effect of the regularization parameter ε to control the sensor distances. Top :
initial sensors localisation, middle and bottom : final sensors localisation for ε = .5 and ε = 1,
respectively.

considering σa = 1 in Fig. 5.2-a, and by adding 3 sensors, the greedy method improves the SNR
up to 17dB while this amount is 24dB for the proposed method (with greedy initialization),
which is 7dB better than the greedy method. Indeed, this result is expected since the proposed
method tackles the optimization of the sensor locations all at the same time instead of one
after the other as in the greedy method. It is also worth noting that the output SNR is worse
by applying the proposed method with a regularly-spaced initialization than by just choosing
the sensor locations by the greedy method with no additional adjustment. This can be due
to the fact that our problem is non-convex, and as such, by having a bad initialization, the
gradient-based approach can converge to a bad local minimum.

5.2.3 Regularizing sensors distances

Figure 5.3 shows the effect of regularizing sensor distances and how it can help to control
the average distances between pairs of sensors. In this part, all the parameters are set as in
the previous section with σa = 1, except that here we consider a tighter grid of size 320. Also,
the number of desired sensors is set to be M = 15. For the proposed method, two different
values for the lower bound are considered : ε = 0.5 and ε = 1. We note that we intentionally
choose the parameters such that we have most of the information between 0 < x < 0.2 and
the positions of the sensors suggested by the algorithm not being so scattered in the space.
In this way, we can better visualize and compare the effect of ε in controlling the distances
between the sensors. In Fig. 5.3 we can see that the sensors are located in three clusters, one
cluster is the range x ∈ [0.01, 0.03], the second one is in x ∈ [0.08, 0.1], and the third one is in
x ∈ [0.15, 0.17].
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Now, let’s start with the result obtained from the greedy method by looking at the first
sub-figure. In this sub-figure, we can see that there are regular spaces between the sensors
approximately equal to 1/320 ∼ 0.003, which is exactly according to the size of the grid, i.e.
320. It means that, if there is some important information within the grid in each cluster, this
information will be lost as the greedy approach can not observe within the grid, and to solve
this issue, the only solution is to increase the size of the grid which causes a high computational
cost due to the combinatorial search that should be done in the greedy method.

In the second and the third sub-figures we have demonstrated the results obtained from
the gradient-based approach for two different values of the parameter, ε = 0.5 and ε = 1,
to show the effect of this parameter in tuning the average distances between the sensors. By
comparing the second and the third sub-figures, we can see that after increasing ε from 0.5 to
1, in each cluster the average distances between the sensors are increased. To better compare
the results obtained from these two experiments, we have calculated the average distances
between the sensors. The value of ||DX|| for the second sub-figure (ε = 0.5) is reported equal
to 0.8509, while this value is 0.8647 for the third sub-figure where we set ε = 1.

We also mention that by comparing the results of the gradient-based approach in the
second and the third sub-figures with the results from the greedy approach in the first sub-
figure, we can see that by using the gradient-based approach we no longer have the problem
of the grid size, and we can easily observe the whole space without increasing the size of the
grid and, thus, without increasing the computational cost.

The final SNR values for each approach, from top to bottom, are 29.22 dB (initial SNR),
32.22 dB (ε = 0.5), and 31.53 dB (ε = 1), respectively. As we can see, since the gradient-based
method can search for the information within the grid for sensor placement, we obtained better
output SNR. On the other hand, increasing ε leads to only a slight decrease of the output
SNR while increasing the average distance between the sensors, which is a positive aspect of
the proposed method in case of having limitations regarding the minimum distances between
the sensors.

5.2.4 Effect of the smoothness parameter ρa

In this part, we study the performance for different smoothness levels of the uncertainty
of the spatial gain (ρa). We consider an almost difficult situation compared to the previous
experiment and we increase the uncertainty parameter of the spatial gain to σa = 5. We also
considered SNR to be 10 dB to set σn. Note that, here, we consider a large enough SNR so
that we are able to study the difficult situations in terms of the smoothness of the noise and
the spatial gain. The rest of the parameters are set similarly as in Subsection 5.2.2. In Fig. 5.4,
the output SNR versus the degree of the spatial gain smoothness, i.e. ρa, is depicted. A large
ρa indicates situations where we are dealing with smooth conditions such as representing the
maternal tissues of a pregnant women to extract the fetal ECG. A small ρa corresponds to more
complicated situations where the source signal is attenuated in a heterogeneous environment,
e.g. an acoustic signal passing through the ocean where there are many obstacles of different
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Figure 5.4: Effect of the smoothness parameter of spatial gain ρa.

types on the way of the source signal. We can see that as the signal becomes more non-
smooth (i.e. if ρa decreases), the performance of the greedy approach deteriorates much faster
than the proposed method. This is due to the presence of highly informative sensor positions
in between grid points, which cannot be chosen by the greedy approach.

5.3 Conclusion

In this chapter, we addressed optimal sensor placement for signal extraction by maximizing
output signal to noise ratio. In contrast to the greedy approach proposed in Chapter 3, our
new proposed method adjusts all the sensors locations at once instead of choosing them one
at a time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between the sensors, is
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
proposed method is shown to be able to control the average distances between the sensors. In
future works, an explicit constraint on each distance between pair of sensors can be studied
as well as global optimization algorithms to avoid converging to a local optimum.
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Conclusions and perspectives

6.1 Conclusions

In this thesis, we have studied the problem of optimal sensor placement for signal extraction
from noisy measurements. This problem is crucial if the data are collected by a limited number
of sensors. To this end, we proposed different criteria, as well as a novel optimization approach
to target the problem. First, in Chapter 3, the average output SNR of the linearly extracted
signal has been proposed as a quality criterion to predict sensor locations. Such a criterion
includes the uncertainty on the spatial gain of the source to be extracted, providing a suitable
solution for the optimal sensor placement problem. Numerical simulations have shown the
superior efficiency and accuracy of the proposed method in the source extraction problem when
compared to the classical sensor placement criteria such as entropy and mutual information.

Since the SNR is a continuous random variable in our setting, we derived its pdf in Chap-
ter 4. We then presented a robust criterion for sensor placement based on the maximization
of its cdf at a target SNR value. Depending on the chosen target SNR value in the proposed
criterion, we can make a trade-off between an improvement of the SNR and the robustness
of the criterion. We also showed that the proposed criterion is derived from the distribution
of the SNR so that the previously proposed criterion in Chapter 3 can be seen as a special
case of the new study. Also, to reduce the computational cost of evaluating the criterion, we
proposed a sequential approach where new sensor locations are chosen in batches. We showed
how to update this sequential version when some information on the the gains of the already
placed batches of sensors is available. Numerical results demonstrated a consistent superiority
of the proposed criterion compared with the classical kriging and the average SNR criteria in
terms of the output SNR and robustness against the uncertainty on the model of the spatial
gain.

Finally, in Chapter 5, our last contribution was focused on presenting a new optimization
approach to solve the sensor placement problem. In contrast to the proposed greedy approach,
the new method adjusts all the sensors locations at once instead of choosing them one at a
time. To this end, a gradient-based method is proposed to search for the sensor locations
over the whole space. A constraint, controlling the average distances between sensors, was
also considered to avoid choosing too close sensors (e.g., depending on their size). Due to the
non-convexity of the cost function, the proposed algorithm is initialized with the solution of
the greedy approach. Experimental results demonstrated that the proposed method provides
about 3 dB improvements over the greedy approach. Also, thanks to the new constraint, the
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proposed method is shown to be able to control the average distances between the sensors.

6.2 Perspectives

There are several future research topics regarding the proposed approaches. Some of these
perspectives are complementary works that are along with the works done so far in this thesis,
and we categorize them as short-term perspectives. Meanwhile, there are other interesting
works that can be done on this topic that require more fundamental studies besides what we
have done in this thesis, and we consider them as long-term perspectives. In the following, we
explain some of these future works, separately.

• Short-term perspectives

— Noise uncertainty : In this thesis, we did not take into account the uncertainty on the
noise. As a perspective, we can improve our proposed method by taking into account
the uncertainty of the noise and derive the pdf of the SNR based on the distribution
of both the spatial gain and the distribution of the noise, for instance based on the
Wishart distribution [Wis28].

— Hyperparameters estimation : In this thesis, estimation of the hyperparameters of
the models of the noise and the spatial gain is not considered. This will be an important
problem to be tackled in further studies. For instance, full-Bayesian inference can be
helpful to fill this gap in our proposed methods and provide a good estimation of the
hyperparameters of our models [Bis06] (Chapter 10).

— High dimensional settings : In this thesis, we focused on one dimensional problems
that can be solved by a direct search for the optimal solution in a fine grid. If we
consider higher dimensional settings, then searching in a grid will be prohibitively
complex. Therefore, it will be necessary to develop a fast optimization algorithm for
maximizing our criterion. As an example, the gradient-based technique proposed in
Chapter 5 can be extended for our proposed robust criterion JP in Chapter 4. Also,
to extend our proposed method to 2-D and 3-D spatial spaces, we can take advantage
of the Wishart distribution as a generalization to multiple dimensions of the gamma
distribution [Wis28].

• Long-term perspectives

— Spatial gain estimation : In the sequential approach we used in this thesis, we have
stated that information on the gains of the already placed sensors can be retrieved
with independent component analysis (ICA) or sparse component analysis (SCA). As
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a future work, such an approach where sensor placement is coupled with the blind
source separation (BSS) techniques can be considered.

— Multiple source extraction : In this thesis, we only considered that we want to
extract a single source from a set of measurements. However, extending or proposed
method to the extraction of several sources requires to perfectly study the BSS tech-
niques [CJ10a].

— Trade-off between the SNR improvement and the complexity : As mentioned
in this thesis, although by adding new sensors we probably have improvement in the
average output SNR, i.e. SNR(f̂), at the same time the computational complexity of
the algorithm will be increased. Therefore, it is necessary to make a trade-off between
increasing the SNR and decreasing the computational complexity to set the number of
sensors. Using the Akaike information criterion (AIC) [Aka98] to provide such a balance,
we can propose a criterion which contains one term representing the improvement of
the SNR and another term to measure the complexity of the algorithm.

— Linear convolutive mixture model : In this thesis, we consider a fast propagation
for the source signal, and we used a linear instantaneous model to represent the sensor
measurements. However, in case of the acoustic signals such as the PCG signals, it is
essential to take into account the propagation delay. To this end, a linear convolutive
mixture model must be used instead of the instantaneous model. In this case, although
in the Fourier domain, we also have a linear representation, however, the criteria for
estimating the filter (and possibly a huge number of parameters) are also complicated.
So, extending the proposed criterion to this situation is an interesting challenge that
can be taken into account as a perspective.

— Dynamic design : In many real-world applications, we are usually dealing with dy-
namic environments. For instance, in underwater acoustic communication, the spatial
field between the acoustic source signal and the receiver sensors is always being chan-
ged due to the movement of the living creatures in the ocean, or the movement of the
source, e.g. a whale which emits sound waves. Consequently, the corresponding spatial
gain will be changed over time. Therefore, implementing our proposed method into a
dynamic application requires to design a dynamic system, e.g. by using Kalman filter
which is wildly used in many real-time applications [Kal60], or in case of a mobile
source, we have to consider the changes in the system [Bas88] ; [BN93]. In addition,
linear dynamical systems are well introduced in [Bis06] (Chapter 13.3), which can be
useful to pursue this goal.





Annexe A

Proof of (4.23) : the cdf of w(XM)

From (4.21) we have

gw(w) =gΓ1(w) ∗ gΓ2(w) ∗ · · · ∗ gΓM (w)

=
1

∏M
i=1 di

gv1(
w

d1
; k1, λ1) ∗ gv2(

w

d2
; k2, λ2) ∗ · · · ∗ gvM (

w

dM
; kM , λM ).

Let’s define h(w) , gΓ2(w) ∗ · · · ∗ gΓM (w). So we have

gw(w) = gΓ1(w) ∗ h(w) =

∫ +∞

−∞
h(τ)gΓ1(w − τ)dτ. (A.1)

On the other hand, the cdf of gw(w) is

Gw(θ) =

∫ θ

w=−∞
gw(w)dw. (A.2)

So, by replacing (A.1) in (A.2), we have

Gw(θ) =

∫ θ

w=−∞

∫ +∞

τ=−∞
h(τ) gΓ1(w − τ) dτ dw

=

∫ +∞

τ=−∞
h(τ)

∫ θ

w=−∞
gΓ1(w − τ) dw dτ

=

∫ +∞

τ=−∞
h(τ)GΓ1(w − τ)dτ

= GΓ1(θ) ∗ h(w)

= GΓ1(θ) ∗ gΓ2(θ) ∗ · · · ∗ gΓM (θ)

=
1

∏M
i=2 di

×Gv1

( θ
d1

; k1, λ1

)
∗ gv2

( θ
d2

; k2, λ2

)
∗ · · · ∗ gvM

( θ

dM
; kM , λM

)
.

We note that since all the variables Γi for i = 1, 2, . . . , M play the same role, the above
formula can be obtained as the convolution product of the cdf function of any Γi term and
h(w) being the convolution production of the other terms (different of Γi).
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Annexe B

MATLAB code to generate matrix D

Matlab Code

num_comb = M∗(M−1)/2;
x_perm = combnk(x_M, 2 ) ;
[ ismemb , ind_perm ] = ismember (x_perm ,x_M) ;

D = ze ro s (num_comb,M) ;
D( : , ind_perm ( : , 1 ) ) = 1 ;
D( : , ind_perm ( : , 2 ) ) = −1;
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Abstract — Many signal processing problems can be cast from a generic setting where
a source signal propagates through a given environment to the sensors. Under this setting,
we can be interested either in (i) estimating the source signal, or (ii) the spatial field, or
even (iii) the resulting field of signals in some regions of the environment. In all these cases,
signals are recorded by multiple sensors located at different positions. Due to price, energy or
ergonomic constraints, the number of sensors is often limited and it becomes crucial to place a
few sensors at positions which contain the maximum information. This problem corresponds
to optimal sensor placement and it is faced in a great number of applications. The way to
tackle the problem of optimal sensor placement depends on which of three aspects mentioned
above we want to address.

In this thesis, we focus on estimating the source signal from a set of noisy measurements
collected from a limited number of sensors. Our approach differs from classical kriging based
optimal sensor placement approaches, since the latter focus on best reconstruction of the
spatial measured field. For solving the problem, we propose a first criterion which maximizes
the average signal to noise ratio of the estimated signal. Experimentally, performance obtained
by this criterion outperforms the results obtained using kriging-based methods. Since the
signal to noise ratio is uncertain in this context, to achieve a robust signal extraction, we
propose a second placement criterion based on the maximization of the probability that
the SNR exceeds a given threshold. This criterion can be easily evaluated using Gaussian
process assumption for the signal, the noise and the environment. Moreover, to reduce the
computational complexity of the joint maximization of the criterion with respect to all sensor
positions, we propose a greedy algorithm where the sensor positions are sequentially (i.e. one
by one) selected. Experimental results show the superiority of the probabilistic criterion com-
pared to the average SNR criterion. Finally, for improving the sub-optimal greedy algorithm,
we present an optimization approach to locate all the sensors at once. In this purpose, we add
a constraint to the problem that can control the average distances between the sensors. To
solve our problem, we use an alternating optimization penalty method. In the end, we present
experimental results which show the superiority of the proposed algorithm over the greedy one.

Keywords : Optimal sensor placement, Kriging, Signal extraction, Signal to noise
ratio, Gaussian processes, Alternating optimization, Penalty method.
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Résumé — De nombreux problèmes de traitement du signal peuvent être résolus à partir
d’un cadre générique où un signal source se propage vers les capteurs à travers un environne-
ment donné. Dans ce cadre, on peut s’intéresser soit à (i) l’estimation du signal source, soit
(ii) au milieu de propagation, soit même (iii) au champ de signaux résultant dans certaines
régions de l’environnement. Dans tous ces cas, les signaux sont enregistrés par plusieurs cap-
teurs. En raison de contraintes de prix, d’énergie ou d’ergonomie, le nombre de capteurs est
souvent limité et il devient crucial de placer à des positions qui contiennent le maximum d’in-
formations. Ce problème correspond à un placement optimal des capteurs et il se pose dans
un grand nombre d’applications. La manière d’aborder le problème du placement optimal des
capteurs dépend trois aspects mentionnés ci-dessus que nous voulons aborder.

Dans cette thèse, nous nous concentrons sur l’estimation du signal source à partir d’un
ensemble de mesures bruitées collectées par un nombre limité de capteurs. Notre approche
diffère des approches classiques de placement optimal des capteurs basées sur le krigeage, car
ces dernières se concentrent sur la meilleure reconstruction du champ spatial mesuré. Pour
résoudre le problème, nous proposons un premier critère qui maximise le rapport signal/bruit
moyen du signal estimé. Expérimentalement, les performances obtenues par ce critère sont
supérieures à celles obtenues avec les méthodes basées sur le krigeage. Comme le rapport
signal/bruit est incertain dans ce contexte, pour obtenir une extraction robuste du signal,
nous proposons un second critère de placement basé sur la maximisation de la probabilité
que le rapport signal/bruit dépasse un seuil donné. Ce critère peut être facilement évalué
en utilisant l’hypothèse de processus gaussien pour le signal, le bruit et l’environnement. De
plus, pour réduire la complexité de calcul de la maximisation conjointe du critère par rapport
à toutes les positions du capteur, nous proposons un algorithme glouton où les positions du
capteur sont sélectionnées séquentiellement (i.e. une par une). Les résultats expérimentaux
montrent la supériorité du critère probabiliste par rapport au critère minimisant le rapport
signal/bruit moyen. Enfin, pour améliorer l’algorithme glouton sous-optimal, nous présentons
un algorithme d’optimisation permettant de localiser tous les capteurs en même temps. Dans
ce but, nous ajoutons une contrainte pour contrôler les distances moyennes entre les capteurs.
Pour résoudre notre problème, nous utilisons une méthode d’optimisation alternée. Enfin,
nous présentons des résultats expérimentaux qui montrent la supériorité de l’algorithme
proposé sur l’algorithme glouton.

Mots clés : placement optimal de capteurs, krigeage, extraction du signal, rapport
signal/bruit, processus gaussien, optimisation alternée, optimisation avec contraintes.
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