Independent Vector Analysis Based Subgroup Identification from Multisubject fMRI data

Hanlu Yang¹, M. A. B. S Akhonda¹, Fateme Ghayem¹, Qunfang Long¹, Vince D. Calhoun², Tülay Adali¹

¹Dept. of CSEE, UMBC, Baltimore, MD 21250 ²TReNDS, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303

ICASSP 2022, Singapore

May 22, 2022

Subgroup identification is the key for personalized medicine

Subgroup identification is the key for personalized medicine

- Individual variability in brain functional networks are fingerprints of identifying subjects [*Finn et al., 2015*]
- Subgroup shows homogeneity

Current methods are limited by multiple factors

- Identify subgroups with behavioral variables, clinical, cognitive or other related scores [*Bitsika et al., 2008*], [*Veatch et al., 2014*]
- Apply independent component analysis (ICA) on individual subject fMRI data

 missing multivariate information across subjects [Durieux et al., 2019]
- Apply independent vector analysis (IVA) to multisubject fMRI data relying on user-defined parameters [Long et al., 2020]

Proposed method: subgroup identification using independent vector analysis (SI-IVA)

SI-IVA:

- ✓ captures subgroup structures
- ✓ estimates the number of subgroups in each SCV
- ✓ identifies the corresponding subjects in each subgroup

Hanlu Yang et al.

SI-IVA estimates correlated components across subjects

- Generative model: $\mathbf{X}^{[k]} = \mathbf{A}^{[k]} \mathbf{S}^{[k]}$
- Demixing matrices W^[k], and estimated signals Y^[k] = W^[k]X^[k]
- source component vectors (SCV), $\mathbf{Y}_n = [\mathbf{y}_n^{[1]}, \mathbf{y}_n^{[2]}, \dots, \mathbf{y}_n^{[K]}]^{\mathsf{T}} \in \mathbb{R}^{K \times V}$

[Kim et al., 2006], [Anderson et al., 2012]

Individual SCV preserves the correlation structure of a component across subjects

 $\rho_n^{[k_1,k_2]}$ is the correlation between k_1^{th} and k_2^{th} subjects of n^{th} component

SCVs construct three subspaces:

Independent Vector Analysis Based Subgroup Identification from Multisubject fMRI data

IVA-G preserves correlation structures effectively

[Long et al., 2020], [Anderson et al., 2012]

SI-IVA identifies subgroup structures

- Decompose each $\hat{\mathbf{C}}_n = \mathbf{Q} \mathbf{D} \mathbf{Q}^\mathsf{T}$
- Estimates the number of subgroups from SCVs, $\mathbf{Y}_1 \dots \mathbf{Y}_N$
- Identify subjects that are correlated within a SCV, $\rho_n^{[k_1,k_2]} \neq 0$

Eigenvalues and eigenvectors of $\hat{\mathbf{c}}_n$ reveal subgroups

• $q_{k,1} \neq 0 \in \mathbf{q}_1 \rightarrow \text{subject index}$

• # $(\lambda > 1) \rightarrow$ # subgroups

The variation in eigenvalues can lead to overestimation of subgroups

[Hasija et al., 2020], [Akhonda et al., 2021]

Eigenvalues and eigenvectors of c_n reveal subgroups

• $q_{k,1} \neq 0 \in \mathbf{q}_1 \rightarrow \text{subject index}$

• # $(\lambda > 1) \rightarrow$ # subgroups

The variation in eigenvalues can lead to overestimation of subgroups

[Hasija et al., 2020], [Akhonda et al., 2021]

The variation in eigenvalues leads to overestimation of subgroups

Gershgorin disc transforms eigenvalues' variation

- Gershgorin disc: $\{z \in \mathbb{R} : |z \rho_n^{[i,j]}| \le R_i\}$, where $R_i = \sum_{j \ne i} |\rho_n^{[i,j]}|$
- eig $(\hat{\mathbf{C}}_n) \in \bigcup_{i=1}^{K} \left\{ z \in \mathbb{R} : \left| z \rho_n^{[i,i]} \right| \le R_i \right\}$
- Gershgorin discs of $\hat{\mathbf{C}}_n$ are located at (1,0)

Gershgorin disc transforms eigenvalues' variation

- Gershgorin disc: $\{z \in \mathbb{R} : |z \rho_n^{[i,j]}| \le R_i\}$, where $R_i = \sum_{j \ne i} |\rho_n^{[i,j]}|$
- $\operatorname{eig}(\hat{\mathbf{C}}_n) \in \bigcup_{i=1}^{K} \left\{ z \in \mathbb{R} : \left| z \rho_n^{[i,i]} \right| \le R_i \right\}$

• Gershgorin discs of $\hat{\mathbf{C}}_n$ are located at (1,0)

Gershgorin disc transforms eigenvalues' variation

- Gershgorin disc: $\{z \in \mathbb{R} : |z \rho_n^{[i,j]}| \le R_i\}$, where $R_i = \sum_{j \ne i} |\rho_n^{[i,j]}|$
- eig $(\hat{\mathbf{C}}_n) \in \bigcup_{i=1}^{K} \left\{ z \in \mathbb{R} : \left| z \rho_n^{[i,i]} \right| \le R_i \right\}$
- Gershgorin discs of $\hat{\mathbf{C}}_n$ are located at (1,0)

Gershgorin disc solves the overestimating issue

- Instead of looking for eigenvalues $\lambda > 1$, SI-IVA looks for $\lambda > (R_{min} + 1)$
- Eigenvalue decomposition with Gershgorin disc (EGD) incorporates eigenvalue decomposition with hard thresholding (EHT)

EGD solves the overestimating issue that is caused by hard thresholding

Gershgorin disc solves the overestimating issue

- Instead of looking for eigenvalues $\lambda > 1$, SI-IVA looks for $\lambda > (R_{min} + 1)$
- Eigenvalue decomposition with Gershgorin disc (EGD) incorporates eigenvalue decomposition with hard thresholding (EHT)

• EGD solves the overestimating issue that is caused by hard thresholding

SI-IVA: Identification of subgroup structure

•
$$\#(\lambda_n^1 \dots \lambda_n^M) > (R_{min} + 1) \rightarrow \#$$
 subgroups
• $\mathbf{q}_n^1 \dots \mathbf{q}_n^M \rightarrow$ subject index

Simulation: EGD predicts correct number of subgroups

- 50 schizophrenia patients' resting-state fMRI data were collected from the Center of Biomedical Research Excellence (COBRE) (https://coins.trendscenter.org)
- IVA-G was implemented with order number as 85
- Cross intersymbol interference (Cross-ISI) was used to select the most consistent run for 10 runs with random initialization [Long and Jia et al., 2018]

Hanlu Yang et al.

Independent Vector Analysis Based Subgroup Identification from Multisubject fMRI data

IEEE ICASSP 2022 15/18

- Mean components are thresholded at Z = 2
- Two-sample t-test used to identify the discriminative components (*p* < 0.05)

- Mean components are thresholded at Z = 2
- Two-sample t-test used to identify the discriminative components (*p* < 0.05)

SI-IVA

- identifies subgroup structures
- yields meaningful components and subgroups
- requires no user-defined parameters
- can be adopted to other multi-set data

Acknowledgements

 This work was supported in part by NSF grants CCF 1618551, NCS 1631838 and HRD 2112455, and NIH grants R01MH123610 and R01MH118695

http://mlsp.umbc.edu