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Proximal Algorithms

@ Efficient first order algorithms. Suitable for nonsmooth, constrained,
large-scale problems.
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Proximal Algorithms

@ Efficient first order algorithms. Suitable for nonsmooth, constrained,

large-scale problems.

Proximal mapping [Parikh and Boyd, 2014]

g: domyg — RU {+o0}: proper, lower-semicontinuous

. 1
prox,(u) = argmin g(x) + §Hx —u)?
xedom,

argmin g(x) st |[x—ul2 <7
xedom,

prox,,(u) ~ u — AVg(u)
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© Proximal algorithms

@ Forward-backward Splitting



Forward-backward Splitting

min f(x) + g(x) J

@ f: domy —» R smooth (convex/non-convex)

@ g: domy - RU {400} non-smooth (convex/non-convex)
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Forward-backward Splitting

min f(x) + g(x) J

xeR”

@ f: domy —» R smooth (convex/non-convex)

@ g: domy - RU {400} non-smooth (convex/non-convex)

Descent lemma
f: domy — R, smooth and L-gradient Lipschitz*, u € (0,1/L]

x,y cdomf:  £(x) < Fy) 2 fy) + Vi) (x—y) + inx —yI3

fxy)

*Va,y € domf :

[VF() = Vim)ll2 < Lix = yll2
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Forward-backward Splitting

min f(x) + g(x)

X411 = argmin f(x, xi) + 9(x)
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Forward-backward Splitting

min f(x) + g(x)

X411 = argmin f(x, xi) + 9(x)

1
Xpep1 = argmin o x — (x = pVF(x0))[3 + 4 g(x)
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Forward-backward Splitting

min f(x) + g(x)

X411 = argmin f(x, xi) + 9(x)

1
Xpep1 = argmin o x — (x = pVF(x0))[3 + 4 g(x)

g(x) Flx.x)

© Forward step: z, = xi, — uV f(xk)

@ Backward step: xj41 = prox,, ,(zx) [
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© Sparse representation
@ Background



Background

Sparse representation

y ~ x1dy + xodo + ... + z,d,;, = Dx  most z;'s are zero

* Adopted from M. Elad's slides
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Background

Sparse representation

y ~ x1dy + xodo + ... + z,d,;, = Dx  most z;'s are zero

@ Signal restoration:

De-noising (H = identity), inpainting

(H = random rows of identity), de-bluring
(H = blurring matrix), super resolution
(H = down sampling matrix), ...

x ~ Da, a: sparse

min [ly — Hx||3 + a/x — Dal|3 + la|:

* Adopted from M. Elad's slides
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Sparse recovery algorithms

@ Thresholding based algorithms

1
min _[ly — Dxllz + Alx]:
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Sparse recovery algorithms

@ Thresholding based algorithms

1
min _[ly — Dxllz + Alx]:

X" = 8 (x" = ik (Dxs — y))
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Sparse recovery algorithms

@ Thresholding based algorithms

1 1
min oy — Dx|l2 + Allx||x min 2 ly — Dx]|2 + Aflxlo
X" = 8 (x" = ik (Dxs — y))
Salx)

A

0

—A

A 0 A T
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Sparse recovery algorithms

@ Thresholding based algorithms

1 1
min 2y — Dx||z + Allx|l min 2 ly — Dx]|2 + Aflxlo

X = S (3" — i (Dxi — y) ‘ ’XHI = Hyupr (X" — e (Dx, — y))

pr € (0,1/0max(D))
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Sparse recovery algorithms

@ Thresholding based algorithms

1 1
min 2y — Dx||z + Allx|l min 2 ly — Dx]|2 + Aflxlo
xk+1 = S#k)\(xk — ,U/k(ka — y)) ‘ ’Xk+1 = H#k)\(xk - /’l’k(ka - Y))
Sa(z) Halx)

pr € (0,1/0max(D))

Examples: IST [Daubechies et al., 2004], GPSR [Figueiredo et al., 2007], IHT
[Blumensath and Davies, 2009], AMP [Donoho et al., 2009], EMGMAMP [Vila et al.,
2013], NESTA [Becker et al., 2009], SCAD [Gasso et al., 2009].
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Sparse recovery algorithms

@ /y norm approximation. Approximate £y norm with a smooth function.

Smoothed LO (SLO) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al.,
2016]
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Sparse recovery algorithms

@ /y norm approximation. Approximate £y norm with a smooth function.
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Il == >~ o)

.T2

fo(2) = exp(=25)
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Sparse recovery algorithms

@ /y norm approximation. Approximate £y norm with a smooth function.

Smoothed LO (SLO) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al.,
2016]

Il == >~ o)

.T2

fo(2) = exp(=25)

‘When oc—=0: [|x]ls = ||x]lo ‘

— - i)
— 1 foa(w)
—1- foni(@)
— =l

2
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Sparse recovery algorithms

@ /y norm approximation. Approximate £y norm with a smooth function.
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2016]

n
Ille =n =3 folw:) min x|, st y=Dx
=1

.T2

fo(2) = exp(=25)
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Sparse recovery algorithms

@ /y norm approximation. Approximate £y norm with a smooth function.

Smoothed LO (SLO) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al.,

2016]
n
e == 3" o) min|x|, st y=Dx
i=1
22
o ) = exp(~ 23 k=0
X :DTy
‘When c—=0: [[x]|s = HXHO‘ Fori=1,2,...
Forj=1,2,...
— ll:ffo‘x(f:> XM = X% — 4o, Vx|
g xFt = x"1 — DY (Dxp41 — y)
k+—k+1
End
git1=o0i-¢c (0<c<1)
End

2
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© Sparse representation

@ lterative Sparsification-Projection



lterative Sparsification-Projection

! Jterative Sparsification-Projection (ISP)

M. Sadeghi, M. Babaie-Zadeh, “Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation”, IEEE
Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
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lterative Sparsification-Projection

! Jterative Sparsification-Projection (ISP)

@ Revisiting the SLO algorithm:
n 2
min (1- exp(—%)) sit. |ly — Dxll2 <e

xER™ 4
=1

fo (%)

M. Sadeghi, M. Babaie-Zadeh, “Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation”, IEEE
Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
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Iterative Sparsification-P

! Jterative Sparsification-Projection (ISP)

@ Revisiting the SLO algorithm:
n 2
min (1- exp(—%)) sit. |ly — Dxll2 <e

xER™ 4
=1

fo (%)

Lemma (Lipschitz constant)

The function f, (defined above) is gradient Lipschitz with constant L = %
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Iterative Sparsification-P

! Jterative Sparsification-Projection (ISP)

@ Revisiting the SLO algorithm:

n 2
. Z;
Jain 1 (1- exp(—a—;)) sit. [y —Dx|l2 <e
im

fo (%)

Lemma (Lipschitz constant)

The function f, (defined above) is gradient Lipschitz with constant L = %
gel%ﬁr}z 2 (1 - exp(—g—;)) + dc(x) —>‘ Xk41 = ProXs, (xk - ,uUVf(xk)) ‘
= g(x)
()

dc(x) = 0 if ||y — DxJ|2 < € and oo otherwise.
M. Sadeghi, M. Babaie-Zadeh, “Iterative Sparsification-Projection: Fast and Robust Sparse Signal Approximation”, IEEE

7/48

1

Trans. Sig. Proc., vol. 64, no. 21, pp. 5536-5548, November 2016.
June 2018

Sparsity, Dictionary Learning, and DNN
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lterative Sparsification-Projection

Theorem (SLO convergence)
Let {xx} be the sequence generated by the SLO algorithm for a fixed o.
Then:

@ This sequence is bounded and convergent, which means that any
accumulation point x* of {xy} is a critical point, and

o the sequence of objective values, i.e., { f5(xx) + dc(Xk)} >0, IS
non-increasing.
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lterative Sparsification-Projection

Theorem (SLO convergence)
Let {xx} be the sequence generated by the SLO algorithm for a fixed o.
Then:

@ This sequence is bounded and convergent, which means that any
accumulation point x* of {xy} is a critical point, and

o the sequence of objective values, i.e., { f5(xx) + dc(Xk)} >0, IS
non-increasing.

If us € (0,2/L], or equivalently, if i € (0,1], then the SLO algorithm
converges.
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lterative Sparsification-Projection

z = Xp, — oV f (xi) = TV (%)

e ISP Motivation:
Xp+1 = Pe(zr)

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018 9 /48



lterative Sparsification-Projection

z = Xp, — oV f (xi) = TV (%)

e ISP Motivation:
Xpi1 = Pe(zr)
T
15 —7;() 7
€T /,
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lterative Sparsification-Projection

5" Gradient descent interpretation of proximal mapping!

[ [Ix|lc smoothed of [|x|[o = X — psV||x|lc behaves like prox,, (x)= hard—thr]
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lterative Sparsification-Projection

5" Gradient descent interpretation of proximal mapping!

[ [Ix|lc smoothed of ||x[lo = x — uoV|x||c behaves like prox,, (x) = hard-thr ]

Algorithm 1 SLO Algorithm 2 ISP
1: Require: y, D, ¢, opin, ¢ > 0, i, I 1: Require: y, D, 79, Ty, ¢ > 0, 1
2: Initialization: x = Dfy, o = o 2: Initialization: x = Dy, 7 =y
3. while ¢ > gy, do 3. while 7 > 7, do
4: fori=1,2,...,1do 4: fori=1,2,...,1 do
6: x=x-DIDx-y) 6: x=x-DiDx-y)
7 end for 7 end for
8: g cCcro 8: TécC T
9: end while 9: end while

3

0: Output: x . Output: x
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lterative Sparsification-Projection

5" Gradient descent interpretation of proximal mapping!

[ [Ix|lc smoothed of ||x[lo = x — uoV|x||c behaves like prox,, (x) = hard-thr ]

Algorithm 1 SLO Algorithm 2 ISP
1: Require: y, D, 0g, 0pyin, ¢ >0, g1, I 1: Require: y, D, 7y, Tyin. ¢ > 0, 1
2: Initialization: x = Dfy, o = o 2: Initialization: x = Dy, 7 =y
3. while ¢ > gy, do 3. while 7 > 7, do

4: fori=1,2,...,1 do 4: fori=1.2,...,1do
760

6: x=x-DIDx-y) 6: x=x-DiDx-y)

7 end for 7 end for
8: g cCcro 8: TécC T
9: end while 9: end while

10: Output: x 10: Output: x

x— eV fs(x) (ISP — 1y, ISP —17)

" T a sparsifying function =
parsitying prox, (x)  (ISP-Hard,ISP-Soft)
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Simulations

Recovery performance. Synthetic data: ymx1 = DmxnXnx1 + €mx1. Bernoulli-Gaussian
sparse signal. Gaussian D and noise. m = 400, n = 1000. Different measurement matrices. D:

sparse, ill-conditioned, non-zero mean, low-rank.
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© Sparse representation

@ |terative Proximal Projection



Iterative Proximal Projection

min J(x) st [y —Ax[2<e
X

I~ J : non-smooth, non-convex

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, “Sparse signal recovery via iterative
proximal projection”, IEEE Trans. Sig. Proc., vol. 66, no. 4, pp. 879-894, 2018.
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Iterative Proximal Projection

min J(x) st [y —Ax[2<e
X

I~ J : non-smooth, non-convex

2
Main idea
min J(z) 4+ d¢(x) st. z=x
X,Z
v
2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, “Sparse signal recovery via iterative
proximal projection”, IEEE Trans. Sig. Proc., vol. 66, no. 4, pp. 879-894, 2018.
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Iterative Proximal Projection

min J(x) st [y —Ax[2<e
X

I~ J : non-smooth, non-convex

2
Main idea
min J(z) 4+ d¢(x) st. z=x
. 1 9
min J(z) + dc(x) + —||x — z||5
X,Z 2
2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, “Sparse signal recovery via iterative
proximal projection”, IEEE Trans. Sig. Proc., vol. 66, no. 4, pp. 879-894, 2018.
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Iterative Proximal Projection

min J(x) st [y —Ax[2<e
X

I~ J : non-smooth, non-convex

2
Main idea
min J(z) 4+ d¢(x) st. z=x
X,z
. 1 2
min J(z) + dc(x) + o—|x — z[|3
X,Z 2
Zp41 = argmin, aJ(z) + 5|z — x|3
Xp+1 = argming dc(x) + 3% — 241 (|3
.
2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, “Sparse signal recovery via iterative
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Iterative Proximal Projection

min J(x) st [y —Ax[2<e
X

I~ J : non-smooth, non-convex

2
Main idea
min J(z) 4+ d¢(x) st. z=x
X,z
. 1 2
min J(z) +dc(x) + o—[Ix — z[l3
X,Z 2
Zp41 = argmin, aJ(z) + 5|z — x|3 Xk = Xp +w - (X — Xp—1)
Xp41 = argming, d¢(x) + 5|1x — zx41|13 Xptr1 = Pe (proxa_J(ik))
2

F. Ghayem, M. Sadeghi, M. Babaie-Zadeh, S. Chatterjee, M. Skoglund, and C. Jutten, “Sparse signal recovery via iterative
proximal projection”, IEEE Trans. Sig. Proc., vol. 66, no. 4, pp. 879-894, 2018.
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Iterative Proximal Projection

@ Difficult to prove convergence. An alternative algorithm with convergence proof!
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Iterative Proximal Projection

@ Difficult to prove convergence. An alternative algorithm with convergence proof!

An approximate solver:

X = Xp + W - (Xk _Xk—l)

Xp+1 = Pc (PVOXQ.J(ik))

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018 13 / 48



Iterative Proximal Projection

@ Difficult to prove convergence. An alternative algorithm with convergence proof!

An approximate solver:

X =Xk +w- (Xp — Xgp_1)
= Q Zhg1 = ProX, .o (2Zk + f12(Xk — 21))
X1 = Pe(Xk + piz (241 — Xx))

X = Xp + W - (Xk _Xk—l)

Xp+1 = Pc (PVOXQ.J(ik))

IS" 0 < iy, pir < 1. If pg, u, — 1 the two algorithms coincide!
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Iterative Proximal Projection

@ Difficult to prove convergence. An alternative algorithm with convergence proof!

An approximate solver:

X =Xk +w- (Xp — Xgp_1)
= Q Zhg1 = ProX, .o (2Zk + f12(Xk — 21))
X1 = Pe(Xk + piz (241 — Xx))

X = Xp + W - (Xk _Xk—l)

Xp+1 = Pc (PVOXQ.J(ik))

IS" 0 < iy, pir < 1. If pg, u, — 1 the two algorithms coincide!

Algorithm  Iterative Proximal Projection (IPP)
1: Inputs: y, A, €, aj, a5, 7,0 < e < 1, w, 0 < prg, 1 < 1

2: Initialization: k =0, xo = 2o = Aly, a = a;
3: while o > ay do

4: while ||x; — xx_1[]2> 7 do

5: K= Xp +w - (Xp — Xp_1)

6 Ziy1 = Prox,, . (zk + pi=(Xk — 2k))
7 Xie41 = Pa, (Xx + po (241 — Xi))

8 k—=k+1

9: end while

10: ac-a

11: end while

12: Output: xj
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Iterative Proximal Projection

Theorem (IPP convergence)

In the IPP algorithm, assume that 0 < w < — 1. The sequence

1

oo max(/—‘acnu'z)

{uk = (Xk’zk>}k generated by IPP for each value of a (the inner-loop
0

iterations) converges to a critical point, u*, of the cost function. Furthermore, if
the cost function satisfies the Kurdyka-tojasiewicz (KL) property [Bolt et al.,
2014] with ¥(t) = ¢ - t1=9 for some t > 0 and 0 € [0, 1), then:

@ If # = 0 then the sequence {u;},., converges in a finite number of steps.

@ If 6 € (0,1/2] then there exist d > 0 and 7 € [0, 1) such that
|up, —u*|l2 < d- 7"

@ If 6 € (1/2,1) then there exist d > 0 such that |juy —u*|[s <d- fzo=T
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Simulations

Block based compressed image recovery: 50% overlapping blocks, Gaussian
measurement, § = sampling rate.

§=0.1 =02
House  Barbara ~ Monarch House  Barbara ~ Monarch
lq 25.13 22.99 19.87 28.56 25.30 22.71
GOMP 25.00 22.38 19.03 26.68 23.94 21.23
SCSA 25.11 22.96 19.88 28.62 25.26 22.64
EMGMAMP 25.02 22.94 19.69 27.96 25.06
IPP (w = 0) 25.31 23.08 20.46 2772 25.36 22.
IPP (w =0.85)  25.57 23.38 20.67 28.65 25.63 2345
§=0.3 =04
House  Barbara ~ Monarch House  Barbara ~ Monarch
lq 31.17 2738 2497 34.15 30.17 27.65
GOMP 30.85 27.14 24.43 33.59 29.69 27.10
SCSA 31.35 2737 24.99 34.49 30.23 27.79
EMGMAMP 30.91 27.15 24.65 33.64 29.72 27.06
IPP (w = 0) 3111 27.61 24.73 33.56 30.41 27.70
IPP (w = 0.85) 32.50 28.17 25.55 35.01 30.92 28.47
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© Dictionary Learning
@ Background



Dictionary Learning

@ Learn a sparsifying dictionary from training data: 'Y = [y1,...,yz].

Dictionary Learning Problem

minpx Y-, 3|lyi - Dxil2 = 3|[Y -DX|3 st. DeD, Xe&x

...Iz“xn I
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Dictionary Learning

@ Learn a sparsifying dictionary from training data: 'Y = [y1,...,yz].

Dictionary Learning Problem

minpx Y-, 3|lyi - Dxil2 = 3|[Y -DX|3 st. DeD, Xe&x

...Iz“xn I

Alternating minimization

o Start with (D), X () Alternate between:
© Sparse representation: X(**1) = argming, 1[|Y — D®OX]|2
=" OMP, IST, SLO, ..
@ Dictionary update: D*+V = argming, 5, (Y — DXEHD12,
IZ" MOD, KSVD, ...
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Applications of dictionary learning

@ Signal /image restoration and enhancement
o Image denoising [Eiad et al., 2006]:

y=x+e

Learn the dictionary from the noisy image itself!

ﬁ=argmln -||X Y||z+>\Z||RmX Dayjlz st Jagllo <7
D {c;} i,
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Applications of dictionary learning

(] Speech denoising [Sigg et al., 2012; Jafari et al., 2011]

Parameter dictionary learning [vaghoobi et al., 2000; Ataee et al., 2010]:

Learning structured atoms:
e Example. Gammatone filters have shown similarities with the human
auditory system:

g(t) = at" e~ 2Bt cos(2m f.t)

filter centre frquency=1000Hz
filter bandwidth=125Hz
order=4

= o AW W NN
-
-2
3
o 0.02 0.04 0.06 0.08 0.1

https:/fwww. researchgate.net/publication/264837246
_Voice_biometric_feature_using_Gammatons_filterbank_and_ICA/figures?lo=1
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Applications of dictionary learning

@ Multi-modal dictionary learning [monaci et al., 2007; Zhuang et al., 2013]

@ Learning multi-modal atoms to describe underlying generating cause, speaker
localization, and so on

Word “One”

Audio anwMMMMMJmllma\MNMVW\JWMWWW
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Applications of dictionary learning

@ Multi-modal dictionary learning [monaci et al., 2007; Zhuang et al., 2013]
@ Learning multi-modal atoms to describe underlying generating cause, speaker
localization, and so on
Word “One”

Audio MMJﬂwMMMMMJW(‘"MWWWMWWW WA

Time

@ Stereo image representation [Tosic et al., 2011]

o Efficient image representation to perform different vision task like camera
pose estimation

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018 19 / 48



Applications of dictionary learning

o Supervised dictionary Iearning [Mairal et al., 2010; Zhang et al., 2010]

1
mip  SIY-DXJ3 + AT-WXJ3 st [X[o<r
, —_——

| ——

representation power discrimination power

o T: label matrix
o W: linear classifier

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018 20 / 48



Learning Low Coherence Dictionaries

Mutual Coherence

For a dictionary D € R™ ™ its mutual coherence is defined as

[(ds, dj)l
u(D) £ max ————L—
i#i |ldgll2 - [|dy]l2

The Welch bound:

m—n

n(m—1)
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Learning Low Coherence Dictionaries

Mutual Coherence

For a dictionary D € R™ ™ its mutual coherence is defined as

(dy, dy)]
u(D) £ max —on I
5 Tdillz iy

The Welch bound:

Low MC dictionaries
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Learning Low Coherence Dictionaries

ized: | win P AIDTD -1
@ Regularized: min oY - DX||r +

ID'D —T||% =) [(di,dj)|* + D ((di,di) — 1)°
i#j i
Bounded Self Coherence (BSC) [Sigg et. al, 2012], Gradient Projection (GP) [Bao et. al,
2015]
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Learning Low Coherence Dictionaries

. 1
@ Regularized: |min Z|Y — DX||7 +_
DeD 2

ID'D —T||% =) [(di,dj)|* + D ((di,di) — 1)°
i#j i
Bounded Self Coherence (BSC) [Sigg et. al, 2012], Gradient Projection (GP) [Bao et. al,
2015]

coade [ L 2
@ Constrained: min SIIY =DX][p st. -

Iterative Projection Rotation (IPR) [Barchiesi and Plumbley, 2013]
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Learning Low Coherence Dictionaries

ized: | win P AIDTD -1
@ Regularized: min oY - DX||r +

ID'D —T||% =) [(di,dj)|* + D ((di,di) — 1)°
i#j i
Bounded Self Coherence (BSC) [Sigg et. al, 2012], Gradient Projection (GP) [Bao et. al,
2015]

coade [ L 2
@ Constrained: min SIIY =DX][p st. -

Iterative Projection Rotation (IPR) [Barchiesi and Plumbley, 2013]

IE" Uses a two-step procedure: decorrelation -+ rotation

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018 22 /48



© Dictionary Learning

@ learning low coherence dictionaries



Mutual coherence-based DL

Low coherence DL

#(D) = D™D ~Tjos [Aflo 2 maxas

Proposed problems?:

minpep 3[|Y — DX[|% 4+ A|D'D — I||
minpep 3[Y —DX[% st [|DTD — I < pg

a M. Sadeghi and M. Babaie-Zadeh, “Learning low-coherence dictionaries for sparse representation”, Sig. Proc.,

2018 (submitted).
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Mutual coherence-based DL

Low coherence DL

#(D) = ID7D ~Tloo [ Allsc £ max|as

Proposed problems?:

minpep 3[|Y — DX[|% 4+ A|D'D — I||
minpep 1[[Y —DX|% st [DTD —1I|j < po

M. Sadeghi and M. Babaie-Zadeh, “Learning low-coherence dictionaries for sparse representation”, Sig. Proc.,

2018 (submitted).

Main idea

@ Introduce G = DTD — 1. Use penalty method + proximal algorithm!

. 1 2 1 T 2
e 2||Y DXHF+2allG D" D +1If|z + A\g(G)
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Mutual coherence-based DL

Low coherence DL

#(D) = ID7D ~Tloo [ Allsc £ max|as

Proposed problems?:

minpep 3[|Y — DX[|% 4+ A|D'D — I||
minpep 1[[Y —DX|% st [DTD —1I|j < po

M. Sadeghi and M. Babaie-Zadeh, “Learning low-coherence dictionaries for sparse representation”, Sig. Proc.,

2018 (submitted).

Main idea

@ Introduce G = DTD — 1. Use penalty method + proximal algorithm!

. 1 2 1 T 2
e 2||Y DXHF+2allG D" D +1If|z + A\g(G)

(G) = |G |loo (regularized)
g " 16e(G), CE2{G||Glloo <po} (constrained)

-—
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Mutual coherence-based DL

Updating G

Let g denote the function 7|.||e : RY*N — R. The proximal mapping of g is
given by
prox,(U) = U — P»(U)

where, Pu(.) : RNVN*N —, RNXN s the projection onto the ¢; norm-ball of radius

UL )
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Mutual coherence-based DL

Updating G
Let g denote the function 7|.||e : RY*N — R. The proximal mapping of g is
given by

prox,(U) = U — P»(U)
where, P;z(.) : RVXN 5 RNXN s the projection onto the ¢, norm-ball of radius
7.

Updating D

The gradient of 1||Y — DX|[|% + 55 ||G — DD + I||% with respect to D is
Lipschitz continuous over D with constant

6N +2|G|r

L= ||XXT
I [+ 70
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Mutual coherence-based DL

Regularized Incoherent DL (RINC-DL) and Constrained Incoherent DL (CINC-DL)

Algorithm 1 RINC-DL
1: Require: Y, D, 7, A\, ¢, Lo, €, I, J
2: Initialization: D = Dy, G =0
3: while stopping criterion for DL not met do

4 1. Sparse approximation: X = SD(Y,D. 1)
5 2. Dictionary update:
6: Ly = | XTX||
7: v=3-|D'D — 1|0
8: i=1
9: | while i <7 and |G —D'D|r> ¢ do
10: ja=1/(L1 +a 1 Ly)
11 for j=1,2,---,7 do
12: | G=D'D- Ps.(D'D-T)
|G =T+ Pgo(D'D-1)| CINCDL
13: | D=Pp(D-uVfD))
14 end for
15: < C-Q
16: 14— 1+1
17: end while
18: end while

19: Qutput: D, X
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Mutual coherence-based DL

Regularized Incoherent DL (RINC-DL) and Constrained Incoherent DL (CINC-DL)

Algorithm 1 RINC-DL

1: Require: Y, D, 7, A\, ¢, Lo, €, I, J

2: Initialization: D = Dy, G =0

3: while stopping criterion for DL not met do

4 1. Sparse approximation: X = SD(Y,D. 1)
5 2. Dictionary update:

6: Ly = | XTX||

7: a=3-|D'D - 1|l

8: i=1

9: | while i <7 and |G —D'D|r> ¢ do

10: ja=1/(L1 +a 1 Ly)

11: for j=1,2,---,7 do

12: | G=D'D- Ps.(D'D-T)
|G =T+ Pgo(D'D-1)| CINCDL

13: | D=Pp(D-uVfD))

14 end for

15: < C-Q

16: 14— 1+1

17: end while
18: end while
19: Qutput: D, X

Algorithm Complexity

IPRDL  O(nNM + MN? +3n2N 4 2n° +2N%)
CINC-DL O(nNM +nN?)

RINC-DL O(nNM +nN?)

@ n : signal dimension
@ N : number of atoms

@ M : number of training
signals
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Simulations

Low-coherence DL for 8 x 8 image blocks: M = 50,000, Dy = DCTg4x256
(f4min = 0.1085), s = 10.

0.03)
0.02
.
z ES
=
0.01
0 () e O ——
104 102 10 10 10 109 107> 1078 107t 10! 10'Q
A A
0.03 ! : 1,000
3000 T
0.02 a
. : - IPR-DL
z ; 000 -+ BSC-DL |
= ' —RINC-DL
0.01F 1 &= —CINC-DL
: 1,000
Himin |+ CINC-DL
01 03 05 07 09 01 03 05 07 09
1 "
(a) MSE (b) Runtime
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@ Deep Neural Networks
@ Background



Artificial Neural Networks

Estimate the mapping function t = f(x) given some training data {(x;,t;)},

Single layer NN: t =W, g(W;-x)| g: non-linear activation function

Input layer 1 B Output layer

Hidden layer

It can approximate any continuous function under mild conditions (universal
approximation)
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Artificial Neural Networks

@ To approximate complex functions, increase the number of hidden nodes

@ Leads to very wide networks!

Solution: Deepen the network instead of widening it!

Multilayer NN:
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Artificial Neural Networks

Training algorithms:

Woin Znt —Wog(Wr )3

@ Stochastic Gradient Descent (SGD) — Backpropagation
@ Gradient-free training using ADMM [Taylor et al. 2016]

Proximal backpropagation [Frerix et al. 2017]
@ Extreme learning machine (ELM) [Huang et al. 2006]:

5" Set W randomly
¥ Find W using least squares: minwy, 7 Zi\il It: — Wa-g(W1-x;)|3

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018 29 / 48



Dictionary Learning and Neural Networks

Dictionary learning has some similarities with single-layer NN:

e DL: |min ||[Y —DX||% st X is sparse
D,X

@ SNN:: Wrrlll‘lzflV2 T — W2 g(W, - X)|%

IE" Both X and g(W7 - X) with ¢
being ReLU: g(x) = max(z,0)
are non-linear and sparse
representation of data

Input layer L= Output layer

9
Hidden layer
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Dictionary Learning and Neural Networks

More explicit connections between DL (dictionary learning) and DL (deep
learning):

@ V. Papyan, Y. Romano, J. Sulam, and M. Elad, “Theoretical Foundations of
Deep Learning via Sparse Representations,” to appear in IEEE Signal
Processing Magazine.

@ J. Sulam, V. Papyan, Y. Romano, and M. Elad, “Multi-Layer Convolutional
Sparse Modeling: Pursuit and Dictionary Learning,” to appear in IEEE Trans.
on Signal Processing.

From multi-layer convolutional sparse coding (CSC) to convolutional neural
networks (CNNs)
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Artificial Neural Networks

Questions to address in a multilayer NN:

@ How to choose number of layers in a network?
@ How to choose number of nodes in each layer?

@ How to guarantee that increase in size results in better (non-increasing)
optimized cost for training data?

@ How to design with appropriate regularization of network parameters to
avoid over-fitting to training data?

@ Can we use random weight matrices to keep the number of parameters to
learn in balance?
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@ Deep Neural Networks

@ Progressive Neural Networks



Progression Learning Network

Definition (Progression Property)

A non-linear g(.) function holds the progression property (PP) if there are
two known linear transformations V.€ RM*N and U € RVXM sych that
Vv € RN2:

Ug(Vy) =~

2 S. Chatterjee, A. M. Javid, M. Sadeghi, P. P. Mitra and M. Skoglund, “Progressive learning for systematic

design of large neural networks”, IEEE Trans. Neural Networks and Learning Systems, 2017 (submitted).

@ Example: The rectified linear unit (ReLU) function [Glorot et al. 2011]

Cif >0
o) =max(2,0) = { ¢ 7 2]

fV2Vy=[Iy, -Iy]" e RPN and U2 Uy = [Iy —Iy] € RV*2N
then ReLU holds PP. Here Iy denotes identity matrix of size N (M = 2N).

June 2018 33 /48
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Single layer PLN

x [VQWZ*s } Z1 [ PP holding| | ¥1 * t
NLT

] E = 01 g(Wlx)

@ R, is a random matrix
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Single layer PLN

o Wi = ar%Vmin > t0) — Wlsx(j)Hg st [Wi[ld < e
ls

e OF = argmm Z [tG) — Oly(])”p such that [|O1[|7 < af[Uq||g,
Ci, £ O(W3) = 3169 - Wint

Ci =C(07) =) [tV — Ofy} )II” = Z 1t g(Wix)|p

J

IZ" Relation between optimal linear system and single layer PLN
costs: C} < Cf,. At the equality condition: O7 = [Ug 0]

I&" Adding nodes to the layer: C}(ni + A) < Cf(nq)
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Multilayer layer (deep) PLN
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Multilayer layer (deep) PLN
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Multilayer layer (deep) PLN
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Multilayer layer (deep) PLN

VW5, [ Vo0 ] Voor, N

s ||z z - Z t

N [ Ry ] LN I RATN [ S KA PN | R [ ]| ([ o [
LT LT LT
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Multilayer layer (deep) PLN

e Oy = argomin > [t0) — Olyl(j)”g such that [|O| < af[Uqll,
1

o Cf =C(0}) =Y, [It9 —Opy|Ip

Proposition (Small approximation error)

Using PP and under the technical condition Vi, O} # [Ug 0] where O denotes a
zero matrix of size Q x (n; — 2Q), the optimized cost is monotonically decreasing
with increase in number of layers, that is C; < C}_,. For a large number of
layers, that means when | — oo, we have C} < k where k is an arbitrarily small
non-negative real scalar.

=" If we increase A nodes (random nodes) in the I'th layer then we have
Ci (i +A) < Cf ()
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Simulation results

Classification:

Dataset _ Relgularized LS _ _ Regtllarized ELM _ _ ] PLN _
; Training [Testing Test Training| Training| Testing Test Training| Training | Testing Test Training
NME | NME | Accuracy | Time(s)| NME | NME | Accuracy | Time(s) | NME | NME | Accuracy | Time(s)
Vowel -1.06 | -0.81 |28.1 £ 0.0| 0.0035 | -6.083 | -1.49 |53.8 £ 1.7| 0.0549 | -72.54 | -2.21 [60.2 £ 2.4| 1.2049
Extended YaleB| -7.51 [ -4.34 1969 £ 0.6] 0.0194 [ -12.75 | -6.39 [97.8 £ 0.5] 0.3908 | -49.97 [ -12.0 [97.7 £ 0.5] 2.5776
AR 382 | -1.82 [96.1 £ 0.6] 0.0297 | -9.019 | -2.10 [97.2 £ 0.7] 0.5150 | -35.53 | -7.69 [97.6 £ 0.6] 4.0691
Satimage 2282 [ -273 168.1 £0.0] 0.0173 [ -7.614 | -522 [84.6 £ 0.5] 0.8291 | -11.73 | -7.92 [89.9 £ 0.5] 1.4825
Scene 15 -8.68 | -5.03 [99.1 £ 0.2] 0.6409 | -7.821 | -5.78 [97.6 £ 0.3] 2.7224 | -42.94 | -14.7 [99.1 £ 0.3] 4.1209
Caltech101 -3.22 | -1.29 [66.3 £ 0.6| 1.1756 | -4.784 | -1.21 |63.4 £ 0.8] 8.1560 | -14.66 | -4.13 [76.1 = 0.8] 5.3712
Letter -1.00 [ -0.99 [55.0 £ 0.8] 0.0518 [ -9.217 [ -6.29 [95.7 £ 0.2] 20.987 | -18.60 | -11.5 [95.7 £ 0.2] 12.926
NORB 247 | -1.54 1804 £ 0.0] 17879 | -15.97 | -6.77 [89.8 £ 0.5] 23.207 | -13.39 | -6.90 [86.1 £ 0.2] 10.507
Shuttle -6.17 [ -6.31 [89.2 £ 0.0] 0.1332 [ 1831 [ -12.2 199.6 £ 0.1] 1.8940 | -26.26 | -25.0 [99.8 £ 0.1] 4.6345
MNIST 407 | -404 [85.3 £0.0] 0.8122] -9.092 | -8.46 [96.9 £ 0.1] 27.298 | -11.42 | -10.9 [95.7 £ 0.1] 14.181
CIFAR-10 -1.33 [ -1.33 1503 £ 0.0] 10753 ] -2.004 | -2.01 [60.3 £ 0.3] 53.842
CIFAR-100 -020 [-0.13 149 £ 0.0] 12.883

* The vowel database is for vowel recognition task (a speech recognition application)

and all other databases are for image classification (computer vision applications).
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Simulation results

NME and accuracy versus number of nodes for the “Letter’ dataset with
8-layer PLN:

Accuracy
S o4 e
S O 2 w 2 o
~ o ) wn = wn

I
o
n

raining Accuracy | |
esting Accuracy

o
=)

| | | | | 0.55 | |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Total number of random nodes Total number of random nodes
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@ Deep Neural Networks

@ Structured Weight Matrices for Neural Networks



Background

Deep networks create deep trouble!

@ Deep neural networks have many layers and nodes, with hundreds of millions
of parameters — hundreds of megabytes for storage

@ Needs more storage and computational resources

@ Limiting their application in real-time tasks, and smart phones/ wearable
devices

Revolution of Depth

152 layers
A
22\avevs‘ 19|avers I I

357 I I 8layers || S\avers ] sha\law

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet  GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
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Solutions [see Cheng et al., 2018]:

@ Parameter pruning and sharing: Reducing redundant parameters that are not
sensitive to the performance, using e.g. pruning weak connections, network
quantization

@ Low-rank factorization: Using matrix/tensor decomposition to estimate the
informative parameters

@ Transferred/compact convolutional filters: Designing special structural
convolutional filters to save parameters
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Using sparse representation

Motivation:

Weight vectors and filters corresponding to each node in a neural network exhibit
some structure. So, they can be written as sparse linear combinations of e.g.
DCT atoms.

Layer £ — 1 Layer £
Typical-looking filters on the first CONV layer (left), and the 2nd CONV layer (right) of a trained AlexNet.

http://cs231n.github.io/understanding-cnn/

Let wy; be a row of W,. Then, |wy, =s,P = Zs; - ¢; | and sy is sparse.
i
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Using sparse representation

W, =S5,

e ® is a complete (i.e., square matrix) like DCT for images or Gabor
dictionary for speech data

@ S, is a matrix with sparse rows

Advantages:

@ Low memory consumption, as S;'s are sparse and the basis ® is shared
among all the layers

@ Low computational complexity due to the sparseness of S;'s and that the

multiplications with ® can be done very efficiently for particular transforms
like DCT and Fourier

© Preventing overfitting

© Efficient training: SGD + projection
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Using sparse representation

Another sparse structure:

@ Both factors S% and S? are sparse matrices

@ Sparsity is global not row-wise

Again, training is easy: SGD (via backpropagation) + projection

Mostafa Sadeghi (m.saadeghii@Gmail) Sparsity, Dictionary Learning, and DNN June 2018



Simulation results

Test accuracy vs the percentage of non-zeros in each row of S for a 3-layer

structure:
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(a) MNIST dataset
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(b) NORB dataset
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(c) SVHN dataset
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Simulation results

Overfitting effect: MNIST(50,000 — 10,000 training samples)

‘ i‘DAE
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(a) KLD method (b) S-KLD (Haar) method (¢) S-KLD (DCT) method
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© Conclusions



Conclusions

@ New algorithms were proposed for sparse recovery and dictionary learning
problems based on penalty and ADMM methods combined with proximal
algorithms

@ The proposed sparse recovery algorithms gave new insights into some
previous algorithms like SLO

@ Inspired by a progression property, we develop progressive neural networks to
learn architecture of neural networks

@ Structured weight matrices were proposed using sparse representation to
save memory and computation in deep networks
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