Backpropagation Computations in Matrix Form

Mostafa Sadeghi

Electrical Engineering Department
Sharif University of Technology
Tehran, Iran.

February 2018

L-layer neural network

Sanity checks for derivatives

A useful trick for gradient computation

Derivatives for output layer

Derivative for intermediate layers

Final expressions

L-layer neural network

Layerf — 1 Layer ¢

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018

L-layer neural network

An L-layer artificial neural network with input-output {(xi,yi)}i]\ilcan be
described by the following equations (¢ =1,...,L):

zg = Wyay 1 + by
ag = oy(z)

@ ay = input to the /th layer

@ ap = x (input) and a, = estimation of y (output)

@ W, = weighting matrix connecting layer ¢/ — 1 to layer /¢
@ by = bias vector for layer £

@ oy(.) = component-wise nonlinear activation function of layer ¢

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 2/8

Overall training cost function

The overall training cost function can be written as:
N
j 2
Cr=5>" llak — ill
i=1

where, azj': is the network output due to input x;. For simplicity, we only
consider the following single cost, for a generic input-output (x,y), to
derive the gradients with respect to network’s parameters. The obtained
expressions can easily be extended to mini-batches of data.

cr = llar — y|3

“Note. Henceforth, we do not make any difference between derivative and
gradient.

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018

Sanity checks for derivative

Dimension check

@ The derivative of y = f(x) with respect to x is of the same dimension as x.

@ To see if a derivative is correct, always check dimension compatibility for
matrix or vector multiplications.

Example. A € R™*" and x € R™:

2Ax Different dimension than x
VallAx|3 = { 2AATx Incompatible dimension
2AT Ax

Numerical check

@ For complex derivative expressions, a useful sanity check is to compare it
with numerical derivative:

of _ flait+h)— flxzi—h)

, Vi

for a small & > 0. Here, x; denotes the ith entry of x.

v

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 4/8

A useful trick for gradient computation

Consider a general expression like this:

To compute the gradient with respect to each variable, note that the transposed
of the other variables surrounding it are multiplied from the same side as they are.
That is:
Vwf=—-2(WXV -U)(XV)"
Vxf=-2WI(WXV -U)V’
Vvf=-"2WX)T(WXV - U)

Example: f(x, W) = |ly — Wx|[3

Vif = 2WT(y — Wx)
Vwf =—2(y - Wx)xT

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 5/8

Derivatives for output layer

Backprop begins from the output layer and computes derivatives in a
backward manner (a forward pass is firstly performed to update parameter

values):
dcy,

da; 2(aL - Y)
ey _ Oc Oap _ 2ar, —y) © o (z1)

6ZL BaL aZL

8CL _ 8& . azL 6CL aT
8WL - 8zL BWL 8zL L—1
Ocy, _ Ocp, 0zp __ Ocg

db;, — dz; 0b; — Oz

To compute the derivatives of the previous layers recursively, let's define

oc
st
0zy

This is called the sensitivity vector of layer £.

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018 6/8

Derivatives for intermediate layers

Recall:
zy = Wyay_1+ by

ay = oy(z¢)

Then, for{ =L —1,...,1:

der, . Ocp | O0Zevr _ xnT
oap — 8Z[+1 Oa, Wf+16£+1

8CL _ 3CL aag _ T / o
o = ot bar = (Wi 10041) © 0y(z0)= ¢
Ocy, _ Ocp, , Ozp __ T
oW, — 0z OW; dray_y
dcp, __ Ocp . 0zg _ 5y

b, — 9z, 9b; _

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom February 2018

Final expressions

o (Forward pass) For £ =1,..., L, compute

z; = Wya,_1 + by
Ay = U((Zg)

@ (Backward pass) Set 6, =2(ar, —y) ® o} (zL). For{ =L —1,...
compute:

= (WZ+1¢5£+1) © oy(ze)

decp T
° sw, =0,
dcr
° G- = Oy

Update parameters using gradient descent:

OW,

bg < bg 9cr,

{W2 “ W, — a2
— Q%p,

Mostafa Sadeghi (m.saadeghii@Gmail) BackPropMatrixFrom

February 2018 8/8

