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Abstract. Learning sparsifying dictionaries from a set of training sig-
nals has been shown to have much better performance than pre-designed
dictionaries in many signal processing tasks, including image enhance-
ment. To this aim, numerous practical dictionary learning (DL) algo-
rithms have been proposed over the last decade. This paper introduces
an accelerated DL algorithm based on iterative proximal methods. The
new algorithm efficiently utilizes the iterative nature of DL process, and
uses accelerated schemes for updating dictionary and coefficient matrix.
Our numerical experiments on dictionary recovery show that, compared
with some well-known DL algorithms, our proposed one has a better
convergence rate. It is also able to successfully recover underlying dictio-
naries for different sparsity and noise levels.

Keywords: Sparse representation, compressed sensing, dictionary learn-
ing, proximal algorithms.

1 Introduction

The information contents of natural signals are usually significantly less than
their ambient dimensions. This fact has been extensively used in many applica-
tions, including compressed sensing [1]. Let y ∈ Rm be a given (natural) signal.
Then, its representation over a set of signal building blocks, {d1, · · · ,dn} (called
atoms) is written as y =

∑n
i=1 xi · di = Dx, where D ∈ Rm×n is called dictio-

nary, which contains di’s as its columns, and x ∈ Rn is the vector of coefficients.
If the dictionary is chosen appropriately, then the coefficients vector x is expected
to be very sparse. So, an important question is how to choose the sparsifying
dictionary D. Discrete cosine transform (DCT) and wavelets are two well-known
predesigned dictionaries which can be used in sparsity-based applications. How-
ever, such fixed transforms (dictionaries) are suitable for only particular class
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of signals. An alternative and more efficient way to choose the dictionary is to
learn it from a set of training signals. This process is called dictionary learning
(DL), which has received a lot of attention over the last decade [2]. Given a set

of training signals {yi}Li=1 collected as the columns of the matrix Y ∈ Rm×L,
a dictionary D and the corresponding coefficient matrix X are optimized such
that the representation error ‖Y−DX‖2F becomes small and X has sufficiently
sparse columns. This problem can be formulated as

min
D∈D, X

{
1

2
‖Y −DX‖2F + λ‖X‖0

}
, (1)

where λ > 0 is a regularization parameter, ‖ · ‖0 denotes the so-called `0 pseudo-
norm which counts the number of non-zero entries, and D is defined as follows:

D ,
{
D ∈ Rm×n | ∀ i : ‖di‖2 = 1

}
. (2)

Many algorithms have been proposed to solve (1) or its variants [3–9]. Most
of these algorithms follow an alternating minimization approach, consisting of
two main steps: sparse representation (SR) and dictionary update (DU). In the
first step, D is kept fixed and the minimization is done over X. There exist
many efficient algorithms to perform this step, e.g., orthogonal matching pursuit
(OMP) [10]. In the DU step, X is set to its current estimate obtained in the SR
step, and D is updated. We refer to one round of performing these two steps as
one DL iteration.

When SR and DU steps are solved using iterative algorithms, the iterations
of DL can be efficiently utilized to reduce the work needed for updating D
and X. In other words, the final estimates of D and X obtained in each DL
iteration can be used to initialize the SR and DU steps of the next DL iteration.
Besides accelerating the whole DL procedure, this so-called warm-starting may
also avoid undesired local minima. Earlier works, including method of optimal
directions (MOD) [3] and K-singular value decomposition (K-SVD) [4], do not
take full advantage of this fact. In fact, both of them use OMP to perform the SR
step, which does not efficiently use current estimate of the coefficient matrix1.
Moreover, MOD finds the unconstrained least-squares solution of the DU step

D = YXT (XXT )−1 (3)

which is followed by a column normalization. So, the previous estimate of D is
not used to find the next one. K-SVD, on the other hand, updates the dictionary
atom-by-atom together with the non-zero entries of the coefficient matrix. In this
way, the previous estimates of the atoms are used, in someway, to get the new
estimates. Instances of the DL algorithms that utilize iterative algorithms to
update D and X include [8], which uses iterative majorization minimization,

1 It should be mentioned that, a modification to OMP has been proposed in [11], which
reuses the coefficients obtained in each DL iteration in order to initialize OMP for
the next DL iteration.
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and [9], which proposes a multi-block hybrid proximal alternating (MBHPA)
algorithm to solve the DL problem in (1).

In this paper, new iterative schemes based on proximal gradient algorithms
[12] are proposed to perform SR and DU steps. Unlike the algorithm proposed
in [9], which is also based on proximal approach, our algorithm is equipped with
accelerated extrapolation and inertial techniques [13, 14]. Moreover, `1 norm is
used here, as the sparsity measure in contrast to [9] that uses `0 pseudo-norm.
Another difference between our algorithm and the one proposed in [9] is that, we
update the whole dictionary using iterative proximal gradient method, while [9]
updates the atoms of the dictionary sequentially. As will be shown in Section 3,
our proposed algorithm, which we call accelerated dictionary learning (ADL),
outperforms K-SVD and the algorithm introduced in [9].

The rest of the paper is organized as follows. In Section 2, our new iterative
algorithms for performing SR and DU steps are introduced. Then, Section 3
presents the simulation results.

2 Proposed Method

2.1 Main problem

We target the following problem in order to learn overcomplete dictionaries:

min
D∈D,X

{
‖Y −DX‖2F + λ‖X‖1

}
. (4)

In the same way as usual methods, solving (4) consists of SR and DU steps,
which are performed alternatively. In the rest of this section, we will separately
illustrate how each step is realized to update the coefficient matrix, X, and the
dictionary, D. Before proceeding, let us review some notations and terminologies
related to proximal algorithms [12].

Definition 1 ( [12]). The projection of a point x ∈ Rn onto a non-empty set
S ⊆ Rn is defined as

PS {x} , argmin
u∈S

1

2
‖x− u‖22·

Definition 2 ( [12]). The proximal mapping of a convex function g : domg −→
R is defined as

Proxg {x} , argmin
u∈domg

{
1

2
‖u− x‖22 + g(u)

}
·

Let δS(x) denote the indicator function of the set S, i.e.,

δS(x) ,

{
0 x ∈ S
∞ x 6∈ S

. (5)

The proximal mapping of δS is, then, the projection onto S [12]

ProxδS {x} = PS {x} · (6)
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2.2 Sparse representation

To perform the SR step, let us define

f(D,X) ,
1

2
‖Y −DX‖2F . (7)

The SR step for the i-th DL iteration is then

X(i) = argmin
X

{
f(D(i−1),X) + λ‖X‖1

}
. (8)

To solve the above problem using iterative proximal gradient algorithms [12],
f(D(i−1),X) is replaced with its quadratic approximation around the previous
estimate of X(i) [12]. It is straightforward to show that the final problem is

X
(i)
k+1 = argmin

X

{
1

2µx
‖X− X̂

(i)
k ‖

2
F + λ‖X‖1

}
= Proxµxλ‖.‖1

{
X̂

(i)
k

}
, (9)

where, X̂
(i)
k , X

(i)
k −µx∇Xf(D(i−1),X

(i)
k ), k stands for the iteration index, and

µx is a step-size which is set as µx = 1/‖(D(i−1))TD(i−1)‖, with ‖.‖ being the
matrix spectral norm [15]. The proximal mapping of the `1 norm is the so-called
soft-thresholding operation [12]. The component-wise soft-thresholding function,
denoted by Softλ, is defined as [16]

Softλ {x} , sgn(x) ·max(|x| − λ, 0). (10)

The iterative proximal gradient algorithm to solve (8) can be compactly written
as

X
(i)
k+1 = Softµxλ

{
X

(i)
k − µx∇Xf(D(i−1),X

(i)
k )
}
. (11)

In order to accelerate the algorithm, we add an extrapolation step [14] to the
above algorithm as follows,{

Z
(i)
k = X

(i)
k + wx(X

(i)
k −X

(i)
k−1)

X
(i)
k+1 = Softµxλ

{
Z

(i)
k − µx∇Xf(D(i−1),Z

(i)
k )
} , (12)

in which, wx ≥ 0 is a weighting parameter which controls the convergence rate

of the algorithm. The above iterations are repeated until ‖X(i)
k+1 −X

(i)
k ‖F ≤ τx,

where τx is a given tolerance. This accelerated iterative scheme has already been
discussed in some previous works, including [13, 17] to solve the vector form of
the `1-based sparse representation problem.

2.3 Dictionary update

The problem to be solved in the DU step is as fallows:

D(i+1) = argmin
D∈D

f(D,X(i)), (13)
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which can be equivalently written as

D(i+1) = argmin
D

{
f(D,X(i)) + δD(D)

}
. (14)

Following the same approach used to solve (8), the iterative proximal gradient
algorithm to solve (14) becomes as

D
(i+1)
k+1 = argmin

D

{
1

2µd
‖D− D̂

(i+1)
k ‖2F + δD(D)

}
= ProxµdδD

{
D̂

(i+1)
k

}
, (15)

where, D̂
(i+1)
k , D

(i+1)
k − µd∇Df(D

(i+1)
k ,X(i)), and µd is a step-size, which is

set as µd = 1/‖(X(i))TX(i)‖. According to (6), the proximal mapping in (15)
is the projection onto D. So, the iterative proximal gradient algorithm to solve
(14) can be compactly written as

D
(i+1)
k+1 = PD

{
D

(i+1)
k − µd∇Df(D

(i+1)
k ,X(i))

}
. (16)

To accelerate the above algorithm, we add an inertial term [14] to the above
algorithm as follows:{

C
(i+1)
k = D

(i+1)
k − µd∇Df(D

(i+1)
k ,X(i))

D
(i+1)
k+1 = PD

{
C

(i+1)
k

}
+ wd(D

(i+1)
k −D

(i+1)
k−1 )

, (17)

in which, wd ≥ 0 is a weighting parameter, which controls the convergence rate of
the algorithm. Similar to the X update step, the above iterations are repeated

until ‖D(i+1)
k+1 − D

(i+1)
k ‖F ≤ τd, where τd is a given tolerance. Here, one may

wonder why an inertial scheme is not used for the SR step, or similarly, why an
extrapolated scheme, like the one used in (12), is not used instead of (17). In
fact, it was observed in our simulations that for the SR step, the extrapolation,
and for the DU step, the inertial technique result in the fastest convergence.

2.4 Non-zero coefficients update

Similar to K-SVD, in order to further accelerate the whole DL algorithm, the
non-zero entries of X are also updated after the DU step. Let x[l] denote the

l-th row of X, and Ωl ,
{
j | x[l](j) 6= 0

}
be the indexes of non-zeros in x[l].

Then, x[l](Ωl) is updated as follows

x[l](Ωl) = argmin
xr
[l]

1

2
‖E(Ωl)− dlx

r
[l]‖

2
F = dTl E(Ωl) (18)

in which, E(Ωl) contains those columns of E = Y −
∑
i 6=l dix[i] indexed in Ωl,

and xr[l] is a row vector of length |Ωl|. This process is repeated for all the rows
of X.

A detailed description of the proposed DL algorithm, which we call acceler-
ated dictionary learning (ADL), is given in Algorithm 1.



6 Lecture Notes in Computer Science: Authors’ Instructions

Algorithm 1 ADL

Require: Y, D(1) = D0, X(1) = X0, λ, I, τX , τD, wx, wd.
for i = 1, 2, · · · , I do

1. Sparse representation:
D = D(i), k = 1.
µx = 1/‖DTD‖.
while ‖X(i)

k+1 −X
(i)
k ‖F > τX do

X̂
(i)
k = X

(i)
k + wx(X

(i)
k −X

(i)
k−1)

X
(i)
k+1 = SoftλµX

{
X̂

(i)
k − µx∇Xf(D, X̂

(i)
k )
}

k = k + 1
end while

X(i) = X
(i)
k+1.

2. Dictionary update:
X = X(i), k = 1.
µd = 1/‖XTX‖.
while ‖D(i)

k+1 −D
(i)
k ‖F > τd do

D̂
(i)
k = D

(i)
k − µd∇Df(D

(i)
k ,X)

D
(i)
k+1 = PD(D̂

(i)
k ) + wd(D

(i)
k −D

(i)
k−1)

k = k + 1
end while

D(i) = D
(i)
k+1.

3. Non-zero coefficients update:
for l = 1, 2, · · · , n do

Ωl =
{
i | x[l](i) 6= 0

}
El = Y −

∑
i 6=l dix[i]

x[l](Ωl) = dTl El(Ωl)
end for

end for
Output: D = Di, X = Xi.

3 Simulations

In this section, the performance of our proposed DL algorithm is compared with
K-SVD2 and the algorithm proposed in [9], which is referred to as MBHPA-
DL3. We consider a dictionary recovery experiment, in which, given a set of
training signals generated by sparse linear combinations of the atoms in a known
dictionary, the goal is to recover the underlying dictionary. Our simulations were
performed in MATLAB R2013a environment on a system with 3.8 GHz Intel
cori 7 CPU and 8 GB RAM, under Microsoft Windows 7 operating system. As
a rough measure of complexity, we will report the runtimes of the algorithms.

2 For K-SVD and OMP, we have used K-SVD-Box v10 and OMP-Box v10 available
at http://www.cs.technion.ac.il/~ronrubin/software.html.

3 The MATLAB implementation of our proposed algorithm together with those of the
other compared algorithms will be made available at https://sites.google.com/

site/msaadeghii/.
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Fig. 1: Success rates in recovery of 20×50 dictionaries from a set of 1500 training
signals, for different sparsity levels. The SNR is 100 dB. In this figure, ADL0
corresponds to ADL for wd = wx = 0.

Similar to [4], the underlying dictionary was generated as a random matrix
of size 20 × 50, with zero-mean and unit-variance independent and identically
distributed (i.i.d.) Gaussian entries. The dictionary was then normalized to have
unit-norm columns. A collection of 1500 training signals, {yi}1500i=1 , were pro-
duced, each as a linear combination of s different columns of the dictionary,
with zero-mean and unit-variance i.i.d. Gaussian coefficients in uniformly ran-
dom and independent positions. We varied s from 3 to 6. We then added white
Gaussian noise with signal to noise ratio (SNR) levels of 100 dB and 20 dB. The
algorithms were then applied onto these noisy training signals, and the resulting
recovered dictionaries were compared to the generating dictionary as follows.
Assume that di is a known atom and d̄i is the atom in the recovered dictionary
that best matches di among the others. We say that the recovery is successful
if |dTi d̄i| is above 0.99 [4]. To evaluate the performance of the algorithms, we
calculated the percentage of recovered atoms. We performed 200 iterations be-
tween the SR and DU steps for all the algorithms. The initial dictionary was
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Fig. 2: Success rates in recovery of 20×50 dictionaries from a set of 1500 training
signals, for different sparsity levels. The SNR is 20 dB. In this figure, ADL0
corresponds to ADL for wd = wx = 0.

made by randomly choosing different columns of the training signals followed by
a normalization.

It should be noted that the original MBHPA-DL algorithm proposed in [9]
performs only one iteration to update the coefficient matrix in SR step. This leads
to a very slow convergence rate, usually ending up with a dictionary far away
from the underlying one, which is confirmed by our simulations. As a solution, we
modified MBHPA-DL’s SR step by running it until a stopping criterion, similar
to the one used in Algorithm 1, is satisfied. We call this version of the algorithm
mMBHPA-DL, for modified MBHPA-DL.

The initial coefficient matrix for both ADL, MBHPA-DL, and mMBHPA-DL
was set to the zero matrix. It was also observed that, in average, for all values of
s, λ = 0.1 works well. The tolerances for terminating the SR and DU steps were
set as τx = τd = 0.005. The weight parameters, wx and wd, in ADL were set to
0.85. In addition, to see the effect of using extrapolation and inertial accelerating
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Table 1: Average runtimes (in second). In this table, ADL0 corresponds to ADL
for wd = wx = 0.

Algorithm K-SVD mMBHPA-DL ADL0 ADL

Runtime (s) 2.69 15.52 18.29 11.80

schemes, we executed ADL for wx = wd = 0. We refer to this version of ADL as
ADL0.

The resulting success rates of the algorithms, averaged over 50 trials, versus
DL iterations, and for two different noise levels of 100 dB and 20 dB, are shown
in Figs. 1 and 2, respectively. The averaged runtimes are also reported in Table 1.
Inspection of these results leads to several conclusions as follows:

– As clearly demonstrated in Figs. 1 and 2, mMBHPA-DL considerably out-
performs the original MBHPA-DL algorithm.

– The proposed algorithm, for both cases of zero (ADL0) and non-zero weight
parameters (ADL), is more successful in recovery of underlying dictionaries
than K-SVD and mMBHPA-DL. Moreover, the use of non-zero weight pa-
rameters in ADL increases the convergence rate of the algorithm, especially
for s = 5 and s = 6 and high noise level.

– While the performances of K-SVD and mMBHPA-DL deteriorate for s = 5
and s = 6, with that of mMBHPA-DL being more severe, ADL and ADL0
have promising recovery performances for all values of s. Indeed, ADL re-
covers the underlying dictionaries almost perfectly for all values of s, and
both low and high noise levels.

– In terms of runtimes, K-SVD is the fastest algorithm. This is mainly due to
the fact that, it uses the batch OMP algorithm [18] in its SR step, which
is optimized for large training matrices. Moreover, ADL runs faster than
mMBHPA-DL. Another noticeable remark is that, ADL0 has higher runtime
than ADL. In fact, it takes more time for ADL0 to satisfy the stopping
criteria of the SR and DU steps, because it does not utilize accelerated
schemes.

4 Conclusion

This paper presented an accelerated dictionary learning (DL) algorithm based
on iterative proximal algorithms to be used in sparse representation-based appli-
cations. Our proposed approach combines first-order proximal algorithms with
accelerating inertial and extrapolation schemes to update coefficient matrix and
dictionary alternatively, resulting in a simple, yet efficient DL algorithm. It was
demonstrated through a dictionary recovery experiment that, compared with
the well-known K-SVD [4] and a recently introduced algorithm [9], the proposed
algorithm is more successful in recovering underlying dictionaries from a set of,
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possibly noisy, training signals with different sparsity levels. Future works in-
clude applying the proposed algorithm to real-world applications such as image
denoising, and establishing its convergence.
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